ResNet残差网络学习笔记

一、残差网络
残差网络于2016年发表,在ImageNet数据集上碾压众多目标检测与图像分割模型,他的出现对深度神经网络来说i具有重大的历史意义。
在这之前,理论上来说,神经网络深度越深可以提取到更多的数据特征,但事实上会出现会出出现梯度消失的情况。因为神经网络的训练过程是误差反向传播不断更新梯度,从而优化模型参数的过程。但当网络层数加深时,梯度在传播过程中会逐渐消失(梯度弥散),无法有效地对前层网络全重进行优化。

二、ResNet网络解析
相比于传统的平原网络,ResNet增加了跳跃连接(shortcut connection)。相邻卷积之间有激活函数,shortcut后也相应的有激活函数。输出实现恒等映射。

class ResidualBlock(nn.Module):
    """
    实现子module: Residual Block
    """

    def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.right = shortcut

    def forward(self, x):
        out = self.left(x)
        residual = x if self.right is None else self.right(x)
        out += residual
        return F.relu(out)

这样做的优势:因为恒等映射, 所以可以对残差部分进行冻结训练。
在传统的平原神经网络里边,可能网络训练已经达到最优,但随着网络的继续epoch,全重不断更新,但可能会导致全重朝着的错误的方向更新。
ResNe网络结构:

class ResNet(nn.Module):
    """
    实现主module:ResNet34
    ResNet34包含多个layer,每个layer又包含多个Residual block
    用子module来实现Residual block,用_make_layer函数来实现layer
    """

    def __init__(self, blocks, num_classes=1000):
        super(ResNet, self).__init__()
        self.model_name = 'resnet34'

        # 前几层: 图像转换
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, 7, 2, 3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2, 1))

        # 重复的layer,分别有3,4,6,3个residual block
        self.layer1 = self._make_layer(64, 64, blocks[0])
        self.layer2 = self._make_layer(64, 128, blocks[1], stride=2)
        self.layer3 = self._make_layer(128, 256, blocks[2], stride=2)
        self.layer4 = self._make_layer(256, 512, blocks[3], stride=2)

        # 分类用的全连接
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, inchannel, outchannel, block_num, stride=1):
        """
        构建layer,包含多个residual block
        """
        shortcut = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU()
        )

        layers = []
        layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))

        for i in range(1, block_num):
            layers.append(ResidualBlock(outchannel, outchannel))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.pre(x)

        l1_out = self.layer1(x)
        l2_out = self.layer2(l1_out)
        l3_out = self.layer3(l2_out)
        l4_out = self.layer4(l3_out)
        p_out = F.avg_pool2d(l4_out, 7)
        fea = p_out.view(p_out.size(0), -1)
        out=self.fc(fea)
        return l1_out,l2_out,l3_out,l4_out,fea,out
        

每一层的输出 = 上一层输出 + 上边所有层的卷积结果
在这里插入图片描述
梯度表示为:
在这里插入图片描述
即使深层卷积深度不断增加,出现梯度为0的情况,但由于多了个‘1’(shortcurt connnect),梯度反向传播的时候也能持续传递下去,不会出现阻断的情况。

  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值