第T9周:猫狗识别2

>- **🍨 本文为[🔗365天深度学习训练营]) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](K同学啊)**

一、前期工作

1. 设置GPU

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

2.导入数据

import numpy as np
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./365-9-data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

 

二、数据预处理

1. 加载数据、

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 64
img_height = 224
img_width  = 224

 TensorFlow版本是2.2.0的同学可能会遇到module 'tensorflow.keras.preprocessing' has no attribute 'image_dataset_from_directory'的报错,升级一下TensorFlow就OK了。

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。 

class_names = train_ds.class_names
print(class_names)

 

                                        每批有64张图象,长宽都是224的,彩色3通道                                 

2. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
  • Image_batch是形状的张量(64, 224, 224, 3)。这是一批形状224x224x3的64张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(64,)的张量,这些标签对应8张图片

3. 配置数据集 

  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行
    AUTOTUNE = tf.data.AUTOTUNE
    
    def preprocess_image(image,label):
        return (image/255.0,label)
    
    # 归一化处理
    train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
    val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
    
    train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
    val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

    如果报 AttributeError: module 'tensorflow._api.v2.data' has no attribute 'AUTOTUNE' 错误,就将 AUTOTUNE = tf.data.AUTOTUNE 更换为 AUTOTUNE = tf.data.experimental.AUTOTUNE,这个错误是由于版本问题引起的

  • 4. 可视化数据

    plt.figure(figsize=(15, 10))  # 图形的宽为15高为10
    
    for images, labels in train_ds.take(1):
        for i in range(8):
            
            ax = plt.subplot(5, 8, i + 1) 
            plt.imshow(images[i])
            plt.title(class_names[labels[i]])
            
            plt.axis("off")

  • 三、构建VGG-16网络

    VGG优缺点分析:

  • VGG优点
  • VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点
  • 1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

    结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示
  • VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

 

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(1000, (img_width, img_height, 3))
model.summary()

 

 

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
    model.compile(optimizer="adam",
                  loss     ='sparse_categorical_crossentropy',
                  metrics  =['accuracy'])

    五、训练模型

  • from tqdm import tqdm
    import tensorflow.keras.backend as K
    
    epochs = 10
    lr     = 1e-4
    
    # 记录训练数据,方便后面的分析
    history_train_loss     = []
    history_train_accuracy = []
    history_val_loss       = []
    history_val_accuracy   = []
    
    for epoch in range(epochs):
        train_total = len(train_ds)
        val_total   = len(val_ds)
        
        """
        total:预期的迭代数目
        ncols:控制进度条宽度
        mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
        """
        with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
            
            lr = lr*0.92
            K.set_value(model.optimizer.lr, lr)
            
            train_loss     = []
            train_accuracy = []
            for image,label in train_ds:   
                """
                训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法
    
                想详细了解 train_on_batch 的同学,
                可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
                """
                 # 这里生成的是每一个batch的acc与loss
                history = model.train_on_batch(image,label)
                
                train_loss.append(history[0])
                train_accuracy.append(history[1])
                
                pbar.set_postfix({"train_loss": "%.4f"%history[0],
                                  "train_acc":"%.4f"%history[1],
                                  "lr": K.get_value(model.optimizer.lr)})
                pbar.update(1)
                
            history_train_loss.append(np.mean(train_loss))
            history_train_accuracy.append(np.mean(train_accuracy))
                
        print('开始验证!')
        
        with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:
    
            val_loss     = []
            val_accuracy = []
            for image,label in val_ds:      
                # 这里生成的是每一个batch的acc与loss
                history = model.test_on_batch(image,label)
                
                val_loss.append(history[0])
                val_accuracy.append(history[1])
                
                pbar.set_postfix({"val_loss": "%.4f"%history[0],
                                  "val_acc":"%.4f"%history[1]})
                pbar.update(1)
            history_val_loss.append(np.mean(val_loss))
            history_val_accuracy.append(np.mean(val_accuracy))
                
        print('结束验证!')
        print("验证loss为:%.4f"%np.mean(val_loss))
        print("验证准确率为:%.4f"%np.mean(val_accuracy))

  • 六、模型评估

  • epochs_range = range(epochs)
    
    plt.figure(figsize=(14, 4))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
    plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, history_train_loss, label='Training Loss')
    plt.plot(epochs_range, history_val_loss, label='Validation Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()

    七、预测

  • import numpy as np
    
    # 采用加载的模型(new_model)来看预测结果
    plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
    plt.suptitle("预测结果展示")
    
    for images, labels in val_ds.take(1):
        for i in range(8):
            ax = plt.subplot(1,8, i + 1)  
            
            # 显示图片
            plt.imshow(images[i].numpy())
            
            # 需要给图片增加一个维度
            img_array = tf.expand_dims(images[i], 0) 
            
            # 使用模型预测图片中的人物
            predictions = model.predict(img_array)
            plt.title(class_names[np.argmax(predictions)])
    
            plt.axis("off")

  • 八、数据增强

  • 我们使用tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像来增强数据,来生成大量的不同但相关的图像。这些变换使模型在训练过程中能够看到更多的变化,从而增强其对不同情况下的泛化能力,同时可以学习到更为普遍的特征,从而降低过拟合的风险

    data_augmentation = tf.keras.Sequential(tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"))
    
    # Add the image to a batch.
    image = tf.expand_dims(images[i], 0)
    
    plt.figure(figsize=(8, 8))
    for i in range(9):
        augmented_image = data_augmentation(image)
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(augmented_image[0])
        plt.axis("off")
    

 

 

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
    
train_ds = prepare(train_ds)

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

 

可见,数据增强后,准确率有所上升

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值