comSec作业三:RSA

为什么RSA加解密互逆

已知:
e d ≡ 1 mod  λ ( n ) λ ( n ) ≡ L C M ( p − 1 , q − 1 ) C ≡ M e  mod n M ≡ C d  mod n ed\equiv \text{1 mod }\lambda(n)\\ \lambda(n)\equiv LCM(p-1,q-1)\\ C\equiv M^e\text{ mod n}\\ M\equiv C^d\text{ mod n}\\ ed1 mod λ(n)λ(n)LCM(p1,q1)CMe mod nMCd mod n
证明:
C d ≡ ( M e ) d ≡ M e d ≡ M k λ ( n ) + 1 ≡ M ∗ M k λ ( n )  mod n λ ( n ) ≡ L C M ( p − 1 , q − 1 ) 可知: { M λ ( n ) ≡ 1  mod p M λ ( n ) ≡ 1  mod q 即: { M λ ( n ) − 1 = k 1 p M λ ( n ) − 1 = k 2 p 故有: M λ ( n ) ≡ M k λ ( n ) ≡ 1 mod n 得证 C^d\equiv (M^e)^d\equiv M^{ed} \equiv M^{k\lambda(n)+1}\equiv M*M^{k\lambda(n)}\text{ mod n}\\ \\ \lambda(n)\equiv LCM(p-1,q-1)可知:\\ \begin{cases} M^{\lambda(n) }\equiv 1\text{ mod p}\\ M^{\lambda(n) }\equiv 1\text{ mod q}\\ \end{cases} \\ 即: \begin{cases} M^{\lambda(n) }-1 = k_1p\\ M^{\lambda(n) }-1 = k_2p\\ \end{cases}\\ 故有:M^{\lambda(n) } \equiv M^{k\lambda(n)} \equiv \text{1 mod n}\\ \\得证 Cd(Me)dMedM(n)+1MM(n) mod nλ(n)LCM(p1,q1)可知:{Mλ(n)1 mod pMλ(n)1 mod q即:{Mλ(n)1=k1pMλ(n)1=k2p故有:Mλ(n)M(n)1 mod n得证


9.2 Perform encryption and decryption using the RSA algorithm, as in Figure 9.5, for the following:

a.p=3;q=7,e=5;M=10
n = p q = 21 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 12 用 e g c d 扩展欧几里得算法可知: d = 5 故公钥 P U = { 5 , 21 } , 私钥 P R = { 5 , 21 } 加密: C = M e  mod n = 1 0 5  mod 21 = 19 mod 21 解密: M = C d  mod n = 1 9 5  mod 21 = 10 mod 21 n=pq=21\\ \phi(n)=(p-1)*(q-1) = 12\\ 用egcd扩展欧几里得算法可知:d=5\\ 故公钥PU=\{5, 21\},私钥PR=\{5, 21\}\\ \\ 加密:C=M^e \text { mod n} = 10^{5}\text { mod 21 = 19 mod 21} \\ 解密:M=C^d \text { mod n} = 19^{5}\text { mod 21 = 10 mod 21} n=pq=21ϕ(n)=(p1)(q1)=12egcd扩展欧几里得算法可知:d=5故公钥PU={5,21},私钥PR={5,21}加密:C=Me mod n=105 mod 21 = 19 mod 21解密:M=Cd mod n=195 mod 21 = 10 mod 21
b. p=5;q=13,e=5;M=8
n = p q = 65 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 48 用 e g c d 扩展欧几里得算法可知: d = 29 故公钥 P U = { 5 , 65 } , 私钥 P R = { 29 , 65 } 加密: C = M e  mod n = 8 5  mod 65 = 8 mod 65 解密: M = C d  mod n = 8 29  mod 65 = 8 mod 65 n=pq=65\\ \phi(n)=(p-1)*(q-1) = 48\\ 用egcd扩展欧几里得算法可知:d=29\\ 故公钥PU=\{5, 65\},私钥PR=\{29, 65\}\\ \\ 加密:C=M^e \text { mod n} = 8^{5}\text { mod 65 = 8 mod 65} \\ 解密:M=C^d \text { mod n} = 8^{29}\text { mod 65 = 8 mod 65} n=pq=65ϕ(n)=(p1)(q1)=48egcd扩展欧几里得算法可知:d=29故公钥PU={5,65},私钥PR={29,65}加密:C=Me mod n=85 mod 65 = 8 mod 65解密:M=Cd mod n=829 mod 65 = 8 mod 65
c. p=7;q=17,e=11;M=11
n = p q = 119 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 96 用 e g c d 扩展欧几里得算法可知: d = 35 故公钥 P U = { 11 , 119 } , 私钥 P R = { 35 , 119 } 加密: C = M e  mod n = 1 1 11  mod 119 = 114 mod 119 解密: M = C d  mod n = 11 4 35  mod 119 = 11 mod 119 n=pq=119\\ \phi(n)=(p-1)*(q-1) = 96\\ 用egcd扩展欧几里得算法可知:d=35\\ 故公钥PU=\{11, 119\},私钥PR=\{35, 119\}\\ \\ 加密:C=M^e \text { mod n} = 11^{11}\text { mod 119 = 114 mod 119} \\ 解密:M=C^d \text { mod n} = 114^{35}\text { mod 119 = 11 mod 119} n=pq=119ϕ(n)=(p1)(q1)=96egcd扩展欧几里得算法可知:d=35故公钥PU={11,119},私钥PR={35,119}加密:C=Me mod n=1111 mod 119 = 114 mod 119解密:M=Cd mod n=11435 mod 119 = 11 mod 119

d. p=7;q=13,e=11;M=2
n = p q = 91 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 72 用 e g c d 扩展欧几里得算法可知: d = 59 故公钥 P U = { 11 , 91 } , 私钥 P R = { 59 , 91 } 加密: C = M e  mod n = 2 11  mod 91 = 46 mod 91 解密: M = C d  mod n = 4 6 59  mod 91 = 2 mod 91 n=pq=91\\ \phi(n)=(p-1)*(q-1) = 72\\ 用egcd扩展欧几里得算法可知:d=59\\ 故公钥PU=\{11, 91\},私钥PR=\{59, 91\}\\ \\ 加密:C=M^e \text { mod n} = 2^{11}\text { mod 91 = 46 mod 91} \\ 解密:M=C^d \text { mod n} = 46^{59}\text { mod 91 = 2 mod 91} n=pq=91ϕ(n)=(p1)(q1)=72egcd扩展欧几里得算法可知:d=59故公钥PU={11,91},私钥PR={59,91}加密:C=Me mod n=211 mod 91 = 46 mod 91解密:M=Cd mod n=4659 mod 91 = 2 mod 91
e. p=17;q=23,e=9;M=7
n = p q = 391 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 352 用 e g c d 扩展欧几里得算法可知: d = 313 故公钥 P U = { 9 , 391 } , 私钥 P R = { 313 , 391 } 加密: C = M e  mod n = 7 9  mod 391 = 61 mod 391 解密: M = C d  mod n = 6 1 313  mod 391 = 7 mod 391 n=pq=391\\ \phi(n)=(p-1)*(q-1) = 352\\ 用egcd扩展欧几里得算法可知:d=313\\ 故公钥PU=\{9, 391\},私钥PR=\{313, 391\}\\ \\ 加密:C=M^e \text { mod n} = 7^{9}\text { mod 391 = 61 mod 391} \\ 解密:M=C^d \text { mod n} = 61^{313}\text { mod 391 = 7 mod 391} n=pq=391ϕ(n)=(p1)(q1)=352egcd扩展欧几里得算法可知:d=313故公钥PU={9,391},私钥PR={313,391}加密:C=Me mod n=79 mod 391 = 61 mod 391解密:M=Cd mod n=61313 mod 391 = 7 mod 391


9.3 In a public-key system using RSA, you intercept the ciphertext C = 20 sent to user whose public key is e=13, n=77. What is the plaintext M?

n = p q = 77 = 7 ∗ 11 ,故 p = 7 , q = 11 ϕ ( n ) = ( p − 1 ) ∗ ( q − 1 ) = 60 用 e g c d 扩展欧几里得算法可知: d = 37 故公钥 P U = { 13 , 77 } , 私钥 P R = { 37 , 77 } 解密: M = C d  mod n = 2 0 37  mod 77 = 48 mod 77 n=pq=77=7*11,故p=7 ,q=11\\ \phi(n)=(p-1)*(q-1) = 60\\ 用egcd扩展欧几里得算法可知:d=37\\ 故公钥PU=\{13, 77\},私钥PR=\{37, 77\}\\ \\ 解密:M=C^d \text { mod n} = 20^{37}\text { mod 77 = 48 mod 77} n=pq=77=711,故p=7,q=11ϕ(n)=(p1)(q1)=60egcd扩展欧几里得算法可知:d=37故公钥PU={13,77},私钥PR={37,77}解密:M=Cd mod n=2037 mod 77 = 48 mod 77


9.4 In an RSA system, the public key of a given user is e=65, n=2881.What is the private key of this user? Hint: First use trial-and-error to determine p and q; then use the extended Euclidean algorithm to find the multiplicative inverse of 31 modulo ϕ ( n ) .

$$
n=2881 =4367,故p=43,q=67\
\phi(n)=42
66=2772\
用egcd扩展欧几里得算法可知:d=725\

\
再用egcd算法,得到31模\phi(n)的乘法逆元\
1\quad0\quad2772\
0\quad1\quad31\
1\quad-89\quad13\
-2\quad179\quad5\
5\quad-447\quad3\
-7\quad626\quad2\
12\quad-1073\quad1\

\
所以(31)^{-1} = 1699\text{ mod 2772}
$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值