英伟达显卡二、CUDA11与Cudnn安装
前言
opencv4和onnxruntime的GPU加速都依赖于CUDA11,本次记录CUDA与Cudnn的安装过程
(注意:如果仅仅是做深度学习,安装anaconda后在虚拟环境中直接安装cudatoolkit就可以让Python程序使用CUDA和Cudnn了)
CUDA安装过程
1.下载CUDA
到英伟达CUDA官网下载CUDA11安装包
wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/cuda_11.4.2_470.57.02_linux.run
2.安装
sudo sh cuda_11.4.2_470.57.02_linux.run
要注意的是,安装过程中有一个需要安装的清单,要取消Driver的勾选,因为之前已经安装好了显卡驱动。
然后一路选默认就行了。
3.环境变量
nano ~/.bashrc
在文件底部加上
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
重新打开一个terminal进行测试:
nvcc -V
出现版本号说明CUDA11安装成功.
Cudnn安装过程
1.下载CUDNN
到英伟达Cudnn官网下载Cudnn>=8,具体看CUDA11对应的Cudnn版本,我这里用了8.0.5
2.解压Cudnn .tar文件
tar -xvf cudnn-11.4-linux-xxxxxxx.tgz
解压出一个cuda/文件夹
3.安装到正确的位置
将解压后的文件拷贝到cuda文件夹中:
sudo cp cuda/include/* /usr/local/cuda-11.4/include/
sudo cp cuda/include/* /usr/local/cuda-11.4/lib64/
验证一下:
cat /usr/local/cuda/include/cudnn_version.h
出现版本信息说明安装成功。