[思维][线段关系]Pipe POJ1039

The GX Light Pipeline Company started to prepare bent pipes for the new transgalactic light pipeline. During the design phase of the new pipe shape the company ran into the problem of determining how far the light can reach inside each component of the pipe. Note that the material which the pipe is made from is not transparent and not light reflecting.

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the light beam.

Input

The input file contains several blocks each describing one pipe component. Each block starts with the number of bent points 2 <= n <= 20 on separate line. Each of the next n lines contains a pair of real values xi, yi separated by space. The last block is denoted with n = 0.

Output

The output file contains lines corresponding to blocks in input file. To each block in the input file there is one line in the output file. Each such line contains either a real value, written with precision of two decimal places, or the message Through all the pipe.. The real value is the desired maximal x-coordinate of the point where the light can reach from the source for corresponding pipe component. If this value equals to xn, then the message Through all the pipe. will appear in the output file.

Sample Input

4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0

Sample Output

4.67
Through all the pipe.

题意: 如上图所示,有一根曲折的管子,现在有一束光从最左侧入射,入射点任意,入射角度任意,光线无法反射,无法穿透管子,询问光线能到达的最远距离。

分析: 首先需要知道最优情况下光线一定经过一个上顶点,一个下顶点,这个结论可以反证,假设存在一条最优的光线,一定可以通过平移或者旋转使其过上下两顶点且更优,画出图像就很显然了。知道这个结论后这道题就比较简单了,可以枚举上下两顶点,这两顶点确定一条直线,之后枚举这条直线能通过几个管子,也就是判断直线与每个折点处竖直线段是否相交,如果与每个竖直线段都相交那说明这条直线可以直接穿出整根管子,输出"Through all the pipe.",如果与第k条竖直线段没有交点,前k-1条都有交点,分两种情况,如果k-1 >= max(i, j),ij为枚举的点下标,说明这条光线合法,能够从起点顺利地穿过来,此时更新答案,否则说明光线不合法,在之前的某个位置就被阻挡了。

具体代码如下:  

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
//`Compares a double to zero`
int sgn(double x)
{
	if(fabs(x) < eps)return 0;
	if(x < 0)return -1;
	else return 1;
}
//square of a double
inline double sqr(double x){return x*x;}

struct Point
{
	double x, y;
	Point(){}
	Point(double _x,double _y){x = _x, y = _y;}
	void input(){scanf("%lf%lf",&x,&y);}
	void output(){printf("%.2f %.2f\n",x,y);}
	bool operator == (Point b)const{return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;}
	bool operator < (Point b)const{return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;}
	Point operator -(const Point &b)const{return Point(x-b.x,y-b.y);}
	//叉积
	double operator ^(const Point &b)const{return x*b.y - y*b.x;}
	//点积
	double operator *(const Point &b)const{return x*b.x + y*b.y;}
	//返回长度
	double len(){return hypot(x,y);/*库函数*/}
	//返回长度的平方
	double len2(){return x*x + y*y;}
	//返回两点的距离
	double distance(Point p){return hypot(x-p.x,y-p.y);}
	Point operator +(const Point &b)const{return Point(x+b.x,y+b.y);}
	Point operator *(const double &k)const{return Point(x*k,y*k);}
	Point operator /(const double &k)const{return Point(x/k,y/k);}
	//`计算pa  和  pb 的夹角`
	//`就是求这个点看a,b 所成的夹角`
	//`测试 LightOJ1203`
	double rad(Point a,Point b)
	{
		Point p = *this;
		return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
	}
	//`化为长度为r的向量`
	Point trunc(double r)
	{
		double l = len();
		if(!sgn(l))return *this;
		r /= l;
		return Point(x*r,y*r);
	}
	//`逆时针旋转90度`
	Point rotleft(){return Point(-y,x);}
	//`顺时针旋转90度`
	Point rotright(){return Point(y,-x);}
	//`绕着p点逆时针旋转angle`
	Point rotate(Point p,double angle)
	{
		Point v = (*this) - p;
		double c = cos(angle), s = sin(angle);
		return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
	}
}; 
/*
 * Stores two points
 * Line()                         - Empty constructor
 * Line(Point _s,Point _e)        - Line through _s and _e
 * operator ==                    - checks if two points are same
 * Line(Point p,double angle)     - one end p , another end at angle degree
 * Line(double a,double b,double c) - Line of equation ax + by + c = 0
 * input()                        - inputs s and e
 * adjust()                       - orders in such a way that s < e
 * length()                       - distance of se
 * angle()                        - return 0 <= angle < pi
 * relation(Point p)              - 3 if point is on line
 *                                  1 if point on the left of line
 *                                  2 if point on the right of line
 * pointonseg(double p)           - return true if point on segment
 * parallel(Line v)               - return true if they are parallel
 * segcrossseg(Line v)            - returns 0 if does not intersect
 *                                  returns 1 if non-standard intersection
 *                                  returns 2 if intersects
 * linecrossseg(Line v)           - line and seg
 * linecrossline(Line v)          - 0 if parallel
 *                                  1 if coincides
 *                                  2 if intersects
 * crosspoint(Line v)             - returns intersection point
 * dispointtoline(Point p)        - distance from point p to the line
 * dispointtoseg(Point p)         - distance from p to the segment
 * dissegtoseg(Line v)            - distance of two segment
 * lineprog(Point p)              - returns projected point p on se line
 * symmetrypoint(Point p)         - returns reflection point of p over se
 *
 */
struct Line
{
	Point s,e;
	Line(){}
	Line(Point _s,Point _e){s = _s, e = _e;}
	bool operator ==(Line v){return (s == v.s)&&(e == v.e);}
	//`根据一个点和倾斜角angle确定直线,0<=angle<pi`
	Line(Point p,double angle)
	{
		s = p;
		if(sgn(angle-pi/2) == 0){e = (s + Point(0,1));}
		else{e = (s + Point(1,tan(angle)));}
	}
	//ax+by+c=0
	Line(double a,double b,double c)
	{
		if(sgn(a) == 0)	s = Point(0,-c/b), e = Point(1,-c/b);
		else if(sgn(b) == 0) s = Point(-c/a,0), e = Point(-c/a,1);
		else s = Point(0,-c/b), e = Point(1,(-c-a)/b);
	}
	void input()
	{
		s.input();
		e.input();
	}
	void adjust(){if(e < s)swap(s,e);}
	//求线段长度
	double length(){return s.distance(e);}
	//`返回直线倾斜角 0<=angle<pi`
	double angle()
	{
		double k = atan2(e.y-s.y,e.x-s.x);
		if(sgn(k) < 0)k += pi;
		if(sgn(k-pi) == 0)k -= pi;
		return k;
	}
	//`点和直线关系`
	//`1  在左侧`
	//`2  在右侧`
	//`3  在直线上`
	int relation(Point p)
	{
		int c = sgn((p-s)^(e-s));
		if(c < 0)return 1;
		else if(c > 0)return 2;
		else return 3;
	}
	// 点在线段上的判断
	bool pointonseg(Point p){return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;}
	//`两向量平行(对应直线平行或重合)`
	bool parallel(Line v){return sgn((e-s)^(v.e-v.s)) == 0;/*两向量叉积为0*/ }
	//`两线段相交判断`
	//`2 规范相交`
	//`1 非规范相交`
	//`0 不相交`
	int segcrossseg(Line v)
	{
		int d1 = sgn((e-s)^(v.s-s));
		int d2 = sgn((e-s)^(v.e-s));
		int d3 = sgn((v.e-v.s)^(s-v.s));
		int d4 = sgn((v.e-v.s)^(e-v.s));
		if( (d1^d2)==-2 && (d3^d4)==-2 )return 2;
		return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) ||
			(d2==0 && sgn((v.e-s)*(v.e-e))<=0) ||
			(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
			(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
	}
	//`直线和线段相交判断`
	//`-*this line   -v seg`
	//`2 规范相交`
	//`1 非规范相交`
	//`0 不相交`
	int linecrossseg(Line v)
	{
		int d1 = sgn((e-s)^(v.s-s));
		int d2 = sgn((e-s)^(v.e-s));
		if((d1^d2)==-2) return 2;
		return (d1==0||d2==0);
	}
	//`两直线关系`
	//`0 平行`
	//`1 重合`
	//`2 相交`
	int linecrossline(Line v)
	{
		if((*this).parallel(v))//此时平行或者重合 
			return v.relation(s)==3;//如果当前直线起点在另一条直线上 
		return 2;
	}
	//`求两直线的交点`
	//`要保证两直线不平行或重合`
	Point crosspoint(Line v)
	{
		double a1 = (v.e-v.s)^(s-v.s);
		double a2 = (v.e-v.s)^(e-v.s);
		return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
	}
	//点到直线的距离
	double dispointtoline(Point p){return fabs((p-s)^(e-s))/length();}
	//点到线段的距离
	double dispointtoseg(Point p)
	{
		if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
			return min(p.distance(s),p.distance(e));
		return dispointtoline(p);
	}
	//`返回线段到线段的距离`
	//`前提是两线段不相交,相交距离就是0了`
	double dissegtoseg(Line v){return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));}
	//`返回点p在直线上的投影`
	Point lineprog(Point p){return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );}
	//`返回点p关于直线的对称点`
	Point symmetrypoint(Point p)
	{
		Point q = lineprog(p);
		return Point(2*q.x-p.x,2*q.y-p.y);
	}
};

signed main()
{
	int n;
	while(~scanf("%d", &n))
	{
		if(n == 0)
			break;
		Point up[25], down[25];
		double ans = -1e20;
		for(int i = 1; i <= n; i++)
		{
			up[i].input();
			down[i].x = up[i].x, down[i].y = up[i].y-1; 
		}
		bool flag = false;
		for(int i = 1; i <= n; i++)
		{
			for(int j = 1; j <= n; j++)
			{
				if(i == j)
					continue;
				int k = 1;
				for(; k <= n; k++)
				{
					Line l(up[i], down[j]);
					Line t(up[k], down[k]);//竖直的线段 
					if(!l.linecrossseg(t))
						break;
				}
				if(k == n+1)//穿透了
				{
					flag = true;
					break;
				}
				if(k-1 >= max(i, j))//说明这束光能从起点射过来 
				{
					Line l(up[i], down[j]);
					Line l1(up[k], up[k-1]);
					Line l2(down[k], down[k-1]);
					ans = max(l.crosspoint(l1).x, ans);
					ans = max(l.crosspoint(l2).x, ans);
				}
			}
			if(flag)
				break;
		}
		if(flag)
			puts("Through all the pipe.");
		else
			printf("%.2f\n", ans);
			
	}
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值