大模型训练与微调(5)——微调方法总结 与 选择建议
大模型微调(Fine-tuning)是在预训练模型(如BERT、GPT、T5等)的基础上,通过调整模型参数使其适应特定任务或领域的关键技术。根据调整参数的范围、效率和策略,微调方法可分为以下几类:
一、全参数微调(Full Fine-tuning)
原理:更新预训练模型的所有参数,使其适应目标任务。
优点:理论上性能最佳,模型能充分学习任务特性。
缺点:计算成本高,显存占用大,容易过拟合小数据。
适用场景:数据量充足、计算资源丰富时(如企业级应用)。
二、参数高效微调(Parameter-Efficient Fine-tuning, PEFT)
通过仅调整少量参数或添加轻量化模块来降低计算成本,主要包括以下方法:
1. Adapter Tuning
- 原理:在Transformer层的Feed-Forward Network后插入小型适配层(Adapter),仅训练这些新增参数。
- 结构:Adapter通常包含两个全连接层和激活函数,通过残差连接保留原始特征。
- 优点:参数少,适配不同任务时仅需替换Adapter。
- 缺点:增加推理延迟,需调整模型结构。
- 代表工作:Houlsby et al. (2019) 提出的Adapter模块。
2. LoRA(Low-Rank Adaptation)
- 原理:对模型权重矩阵进行低秩分解,引入可训练的低秩矩阵(如 W = W 0 + B A W = W_0 + BA W=W0+BA,其中 B B B和 A A A 为低秩矩阵),冻结原始权重 W 0 W_0 W0。
- 优点:几乎不增加推理耗时,适用于大模型(如LLaMA)。
- 缺点:低秩矩阵的秩需手动选择。
- 变体:QLoRA(量化+LoRA)、AdaLoRA(自适应秩分配)。
3. Prefix Tuning / Prompt Tuning
- 原理:在输入序列前添加可学习的“前缀”(Prefix)或“提示词”(Prompt),通过调整这些向量引导模型生成目标输出。
- Prefix Tuning:针对每层添加前缀向量。
- Prompt Tuning:仅在输入层添加提示向量(如Google的T5模型)。
- 优点:无模型结构修改,适合生成任务。
- 缺点:提示向量长度影响效果,需较多训练数据。
4. BitFit(Bias-term Fine-tuning)
- 原理:仅微调模型中的偏置项(Bias Terms),冻结其他参数。
- 优点:参数量极少(通常不到总参数的0.1%),适合极端低资源场景。
- 缺点:性能可能弱于其他方法。
5. P-Tuning系列
- P-Tuning v1/v2:将离散的提示词替换为连续可学习的向量,并通过双向LSTM或MLP优化提示的表示。
- 适用场景:小样本学习(Few-shot Learning)。
三、冻结部分参数的微调策略
1. 层冻结(Layer Freezing)
- 原理:冻结模型底层(靠近输入的层),仅微调顶层。
- 依据:底层通常学习通用特征,顶层更接近任务相关特征。
2. 模块选择性微调
- 示例:仅微调注意力机制中的查询(Query)矩阵,或仅更新Feed-Forward层。
四、多任务学习与增量微调
1. 多任务微调
- 原理:同时在多个任务上微调模型,共享底层参数,任务间互相增强泛化性。
- 挑战:任务间的平衡与干扰问题。
2. 增量微调(Incremental Fine-tuning)
- 步骤:先在通用领域数据微调,再迁移到特定领域(如:通用英语→医学英语)。
五、优化策略改进
1. 分层学习率(Layer-wise Learning Rate)
- 原理:对不同层设置不同的学习率(底层小,顶层大),防止底层特征被破坏。
2. 早停法(Early Stopping)
- 用途:监控验证集性能,防止过拟合。
六、其他高级方法
1. 模型蒸馏(Distillation)
- 原理:用大模型(教师模型)指导小模型(学生模型)训练,间接实现轻量化微调。
2. 强化学习微调(RLHF)
- 原理:通过人类反馈的奖励信号优化模型(如ChatGPT的RLHF阶段)。
3. 稀疏微调(Sparse Fine-tuning)
- 示例:仅更新部分重要的神经元或参数子集。
七、方法对比与选择建议
方法 | 参数量 | 计算成本 | 适用场景 |
---|---|---|---|
全参数微调 | 100% | 极高 | 大数据、高算力 |
LoRA | 0.1%-1% | 低 | 资源有限,需平衡效果与成本 |
Adapter | 1%-5% | 中 | 多任务适配,可扩展性强 |
Prefix Tuning | 0.1%-1% | 低 | 生成任务(如对话、摘要) |
BitFit | <0.1% | 极低 | 极端低资源场景 |
八、实践建议
- 数据量少时:优先选择参数高效方法(如LoRA、Prefix Tuning)。
- 生成任务:尝试Prompt Tuning或Prefix Tuning。
- 资源充足时:全参数微调仍是最优选择。
- 多任务场景:Adapter或共享底层+独立顶层模块。
通过灵活组合上述方法,可以在计算成本、性能需求和数据量之间找到最佳平衡点。