大模型训练与微调(6)——微调之 Prompt Tuning 详解


今天学了Prompt Tuning,记录一下!以下是 Prompt Tuning 的具体方法详解,涵盖其核心思想、实现步骤、优化策略及实践建议:


一、Prompt Tuning 的核心思想

Prompt Tuning 是一种参数高效微调方法(PEFT),通过在输入序列中插入可学习的连续提示向量(Prompt Embeddings),引导预训练模型适配下游任务。与传统的全参数微调不同,它仅更新提示向量,冻结模型主体参数,显著降低计算成本。

关键特点

  1. 参数高效:仅需调整少量提示参数(通常占总参数的0.1%-1%);
  2. 任务适配灵活:不同任务可独立训练提示向量,共享同一预训练模型;
  3. 无需修改模型结构:仅通过输入序列扩展实现。

二、Prompt Tuning 的典型实现步骤

1. 提示向量的插入方式
  • 输入序列构造
    在原始输入文本前拼接一组可学习的连续向量(即提示向量):

    [Prompt Embeddings] + [Input Text]
    

    例如,对于分类任务,输入可能变为:

    [P1][P2]...[Pn] + "这部电影的评分是:[MASK]"
    
  • 位置扩展

    • 仅输入层:提示向量仅加在输入层的嵌入中(如Google提出的原始Prompt Tuning);
    • 多层扩展(如Prefix-Tuning):在每一层Transformer的注意力模块前拼接提示向量,增强深层引导能力。
2. 参数冻结与优化
  • 冻结模型参数:保持预训练模型的权重不变(仅训练提示向量);
  • 优化目标:通过梯度下降更新提示向量,使其编码任务相关的知识,激活模型的预训练能力。
3. 提示向量的初始化
  • 随机初始化:直接随机初始化(需更多训练数据);
  • 语义初始化:用任务相关词汇的嵌入初始化(如分类任务用“好/坏”等词的嵌入),加速收敛。

三、Prompt Tuning 的具体变体

1. 基础 Prompt Tuning
  • 适用场景:文本分类、生成任务(如T5模型);
  • 实现方式
    仅在输入层添加提示向量,模型前向传播时将其与输入文本的嵌入拼接,通过注意力机制引导模型输出。
2. Prefix Tuning
  • 改进点
    • 将提示向量插入每一层Transformer的Key-Value注意力模块前(而非仅输入层);
    • 使用更复杂的编码方式(如MLP生成前缀向量,增强表示能力)。
  • 优势:对深层特征的引导更充分,适合复杂生成任务(如对话、摘要)。
3. P-Tuning v2
  • 特点
    • 结合Prompt Tuning和Prefix Tuning,支持每层独立的提示向量;
    • 无需依赖外部模型(如LSTM)生成提示,直接优化连续向量。

四、具体实现细节(以PyTorch和HuggingFace为例)

1. 代码框架
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载预训练模型和分词器
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

# 定义可学习的提示向量(提示长度=5,隐藏层维度=768)
prompt_length = 5
hidden_size = model.config.hidden_size
prompt_embeddings = torch.nn.Parameter(torch.randn(prompt_length, hidden_size))

# 冻结模型参数
for param in model.parameters():
    param.requires_grad = False

# 修改前向传播逻辑
def forward(input_ids, attention_mask):
    # 获取原始输入的嵌入
    input_embeds = model.bert.embeddings(input_ids)  # BERT模型的嵌入层
    
    # 拼接提示向量(扩展至batch维度)
    batch_size = input_ids.size(0)
    prompt_embeds = prompt_embeddings.unsqueeze(0).expand(batch_size, -1, -1)
    combined_embeds = torch.cat([prompt_embeds, input_embeds], dim=1)
    
    # 调整attention_mask以包含提示部分
    prompt_mask = torch.ones(batch_size, prompt_length).to(input_ids.device)
    combined_mask = torch.cat([prompt_mask, attention_mask], dim=1)
    
    # 通过模型主体
    outputs = model.bert(
        inputs_embeds=combined_embeds,
        attention_mask=combined_mask
    )
    pooled_output = outputs.last_hidden_state[:, 0, :]  # 取[CLS]向量
    
    # 分类头
    logits = model.classifier(pooled_output)
    return logits
2. 训练流程
  1. 数据预处理:将任务输入转换为模型接受的格式(如分类任务添加[MASK]);
  2. 前向传播:拼接提示向量,扩展注意力掩码;
  3. 损失计算:根据任务类型选择损失函数(如交叉熵损失);
  4. 反向传播:仅更新提示向量和分类头参数;
  5. 保存与部署:仅需保存提示向量(极小的文件)。

五、Prompt Tuning的优缺点

优点缺点
1. 参数高效(仅训练0.1%-1%参数)1. 提示长度敏感(需实验确定最佳长度)
2. 适配多任务(共享模型主体)2. 训练稳定性较低(依赖初始化与学习率)
3. 无需修改模型结构3. 生成任务可能冗余(需设计合适的提示模板)
4. 适合少样本场景4. 性能上限低于全参数微调

六、优化策略

1. 提示长度选择
  • 分类任务:5-20个token;
  • 生成任务:20-50个token(或逐层添加);
  • 实验建议:通过网格搜索确定最优长度。
2. 初始化方法
  • 随机初始化:适合数据量较大的场景;
  • 语义初始化:用任务关键词的嵌入初始化(如情感分析用“好/坏”的嵌入);
  • 任务相关初始化:用相似任务的预训练提示向量迁移。
3. 学习率设置
  • 提示向量的学习率通常高于分类头(如提示向量用1e-4,分类头用1e-5);
  • 使用分层学习率:深层提示向量学习率更低(如Prefix-Tuning)。

七、适用场景与案例

1. 典型场景
  • 少样本学习(Few-shot):数据量不足时快速适配;
  • 多任务学习:不同任务独立训练提示向量,共享模型主体;
  • 资源受限环境:显存不足或需快速部署的场景。
2. 案例参考
  • 文本分类:情感分析、主题分类;
  • 生成任务:对话生成(如GPT-3 + Prompt Tuning);
  • 序列标注:命名实体识别(通过[MASK]预测实体类型)。

八、与其他方法的对比

方法参数更新量是否需要修改模型适用任务
Prompt Tuning0.1%-1%分类、生成
LoRA0.1%-1%否(低秩分解)通用任务
Adapter1%-5%是(插入模块)多任务适配
P-Tuning v20.1%-3%否(多层提示)复杂任务、小模型

九、实践建议

  1. 少样本任务:优先尝试语义初始化提示向量;
  2. 生成任务:使用Prefix-Tuning(每层添加提示);
  3. 性能瓶颈:若效果不足,可结合LoRA(同时训练提示向量和低秩矩阵);
  4. 调参重点:关注提示长度、学习率、初始化策略。

通过灵活应用Prompt Tuning,可以在极低计算成本下实现大模型的高效适配,尤其适合资源受限或需要快速迭代的多任务场景。

<think>好的,我现在需要回答用户关于大模型微调方法和过程的提问。首先,我得理清楚用户的需求。用户提到了大模型微调,可能想知道常见的微调技术、它们的优缺点以及具体步骤。用户还提供了几个引用,涉及LoRA、Prompt Tuning等,这些都需要整合到回答中。 首先,我应该从基础的全参数微调开始解释,这样用户能有一个全面的了解。全参数微调虽然有效,但计算和存储成本高,尤其是对于大模型来说。接下来,需要介绍参数高效微调方法(PEFT),比如LoRA和Prompt Tuning系列,这些是用户提到的引用中的重点。 引用[1]提到过度参数化模型,如CNN和Transformer,这类模型泛化能力强但微调时需要处理大量参数。这里需要说明为什么需要高效的微调方法。引用[2]讲的是LoRA,可以强调其减少可训练参数的优势,但存储问题依然存在。引用[3]详细介绍了Prompt Tuning的几个变体,需要逐个解释它们的特点和演进过程。 然后,我需要组织回答的结构。首先概述微调的基本概念和步骤,然后分点介绍不同的方法,包括全参数微调和参数高效方法。在参数高效方法中,详细说明LoRA、Prefix-Tuning、P-Tuning系列等,结合引用内容。最后总结选择微调方法的考虑因素,并生成相关问题。 需要注意的是,用户要求使用中文回答,行内公式用$...$,独立公式用$$...$$。例如,在解释LoRA时,可能需要提到低秩分解的数学表示,使用行内公式。同时,确保引用的正确标注,比如在提到LoRA时添加[^2],提到Prompt Tuning时引用[^3]。 还要检查是否有遗漏的微调方法,比如Adapter Tuning,虽然用户没有提到,但作为常见技术应该包含进去。此外,回答需要结构清晰,分步骤或分点,帮助用户逐步理解。 最后,生成的相关问题需要围绕大模型微调展开,比如比较不同方法、应用场景、挑战等,确保问题有针对性,能够引导用户进一步探索。</think>大模型微调是指通过调整预训练模型的参数,使其适应特定任务的过程。以下是主要方法和技术详解: ### 一、微调基础流程 1. **预训练模型加载**:从Hugging Face等平台加载基础模型(如BERT、GPT-3) 2. **任务适配改造**:修改输出层结构,例如分类任务添加softmax层 3. **参数选择策略**: - 全参数微调:更新所有参数(计算成本高) - 部分冻结:固定底层参数,仅微调顶层(常用在相似领域任务) 4. **损失函数设计**:根据任务类型选择交叉熵、均方误差等 ### 二、主流微调方法 #### 1. 全参数微调 $$ \theta_{new} = \theta_{pretrained} - \eta \nabla_\theta L(\theta) $$ 适用于数据量充足的场景,但需要$O(N)$存储(N为参数量),例如175B参数的GPT-3需要700GB显存[^1] #### 2. 参数高效微调(PEFT) **(1) LoRA(Low-Rank Adaptation)** 将权重更新量分解为低秩矩阵:$W' = W + BA$,其中$B \in \mathbb{R}^{d×r}, A \in \mathbb{R}^{r×k}$,可减少97%参数[^2] ```python # 伪代码实现 class LoRALayer(nn.Module): def __init__(self, rank): self.A = nn.Parameter(torch.randn(input_dim, rank)) self.B = nn.Parameter(torch.zeros(rank, output_dim)) def forward(x): return x @ (W + self.A @ self.B) ``` **(2) Prompt Tuning系列** - **Prefix-Tuning**:在输入前添加可学习的连续向量$P \in \mathbb{R}^{l×d}$,通过LSTM生成前缀参数 - **P-Tuning v2**:在不同网络层插入prompt tokens,解决深层次任务适配问题 **(3) Adapter Tuning** 在Transformer层间插入适配模块: $$ h' = h + f(W_{down} \cdot \sigma(W_{up} \cdot h)) $$ 通常仅添加3-5%新参数 ### 三、方法对比 | 方法 | 参数量占比 | 训练速度 | 任务迁移能力 | |---------------|------------|----------|--------------| | 全参数微调 | 100% | 慢 | 优 | | LoRA | 0.1-1% | 快 | 良 | | Prefix-Tuning | 0.1-0.5% | 中 | 中 | ### 四、实践建议 1. 小样本场景优先使用LoRA或Prompt Tuning 2. 多任务学习建议使用Adapter结构 3. 部署时可通过参数合并(如LoRA的$W+BA$合并为单个矩阵)减少推理延迟
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值