【Comfyui】WaveSpeed 5 倍加速 Flux 20s 急速出图

WaveSpeed 简介

WaveSpeed 是一款致力于ComfyUI 的一体化推理优化解决方案,通用、灵活、快速的插件;目前功能还在完善中,不过仅目前发布的功能对 Flux 、LTXV 、HunyuanVideo 等模型的加速还是很明显的。

下面我们使用 WaveSpeed 对Flux进行加速测试。

官方地址:

https://github.com/chengzeyi/Comfy-WaveSpeed

主要的加速节点分两个 :

  1. Dynamic Caching (First Block Cache)

受 TeaCache 和其他去噪缓存算法的启发,我们引入了第一个块缓存 (FBCache),以第一个 transformer 块的残差输出作为缓存指示符。如果第一个 transformer 模块的电流和前一个 transformer 模块的剩余输出之间的差异足够小,我们可以重用前一个最终的残余输出,并跳过所有后续 transformer 模块的计算。这可以显著降低模型的计算成本,在保持高精度的同时实现高达 2 倍的加速。

要使用第一个数据块缓存,只需在 Load Diffusion Model 节点之后将 wavespeed->Apply First Block Cache 节点添加到工作流中,并将 residual_diff_threashold 值调整为适合模型的值,例如:0.12 表示具有 fp8_e4m3fn_fast 和 28 步的 flux-dev.safetensors。预计速度将提高 1.5 到 3.0 倍,而精度损失可接受。

  1. Enhanced torch.compile

    要使用增强的 torch.compile,只需在 Load Diffusion Model 节点或 Apply First Block Cache 节点之后将 wavespeed->Compile Model+ 节点添加到您的工作流程中。编译过程在您第一次运行工作流程时发生,这需要相当长的时间,但会缓存以供将来运行。您可以传递不同的模式值以使其运行得更快,例如 max-autotune 或 max-autotune-no-cudagraphs。与原始 TorchCompileModel 节点相比,此节点的优势之一是它与 LoRA 一起使用。

    注意:使用 FP8 量化编译模型在 RTX 3090 等 Ada 之前的 GPU 上不起作用,您 应该尝试使用 FP16/BF16 模型或删除编译节点。

在官方建议使用 torch.compile 时还需要在启动时设置

comfy launch -- --gpu-only

但是参照设置后运行会产生显存溢出的错误(16G)所以在下面的测试中没有添加此参数进行 Comfyui 启动;如果有添加该参数测试成功的小伙伴可以分享一下

安装

  1. 通过 Comfyui-Manager 安装

  1. 通过 git 手动安装;启动命令行,进入custom_nodes目录,执行 git clone 命令
git clone https://github.com/chengzeyi/Comfy-WaveSpeed.git

工作流实战

具体工作流如下图所示

主要节点解析

1. Apply First Block Cache

重要参数为 :

residual_diff_threashold

以下是该参数使用最佳配置;对应的模型配置不一样,使用以下配置可以在加速的同时达到最小精度损失

  1. 对于 Flux 模型最佳配置为

0.12 ,采样步数为28步

2. Compile Model+

该节点无需多余更改保持默认即可

效果对比

  1. 不使用任何加速,28步采样

耗时 :104 s

  1. 使用 Dynamic Caching (First Block Cache) 加速

耗时:

  1. 使用 Dynamic Caching (First Block Cache) + (Compile Model+)
![](https://i-blog.csdnimg.cn/img_convert/31910fa1fb644ed46066cd314da937e8.png)

  

耗时: 19.76s

  

![](https://i-blog.csdnimg.cn/img_convert/7b8a36dfd4e5c2429aba948c93dc6ccd.png)

在本次测试中,速度由104s 提速至了 19.76s 加速 5 倍左右;所以这个插件对于 Flux 提速还是相当明显的。

                **图片质量对比**

从上到下分别为原始生成,使用Dynamic Caching (First Block Cache) 加速,使用 Dynamic Caching (First Block Cache) + (Compile Model+) 加速生成;可以看到,最后一张与之前两张的差异还是有的,但是差异主要在物体的形态上,但是质量上基本上还是很不错的。我们可以进行继续抽卡得到我们想要的图片。

以上就是使用 wavespeed 加速 Flux 生图的全部流程了,本次的工作流已上传分享,需要的小伙伴自取,喜欢的小伙伴可以点个收藏+关注哦。

工作流分享看下图:

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### ComfyUI Flux 组合概述 ComfyUI Flux 是一种基于黑森林实验室(Black Forest Labs)开发的 FLUX.1 模型与 ComfyUI 平台相结合的技术解决方案。该组合旨在为用户提供强大的像生成能力和高效的处理流程。 #### 版本说明 FLUX.1 提供三个不同版本: - **FLUX.1-pro**:最高级别的性能表现,支持最先进像生成功能以及顶级提示词解析能力。此版本仅通过官方 API 访问并提供企业级定制服务[^4]。 - **FLUX.1-dev**:从 FLUX.1-pro 中提取而来的开源版,具备相似质量和效率特性,适用于研究和技术探索场景。需要注意的是,尽管其功能强大,但不允许用于商业用途。 - **FLUX.1-schnell**:针对本地开发和个人应用优化过的快运行模式,在 Apache 2.0 协议下开放源码发布。相比其他两个版本而言,它拥有更快的度和更低资源消耗特点。 对于大多数个人开发者来说,推荐使用 FLUX.1-dev 或者 FLUX.1-schnell 进行实验和发展工作。 ### 安装配置指南 为了安装和配置 ComfyUIFLUX.1 的集成环境,请按照如下操作执行: 下载所需文件: ```bash wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar tar -xf FLUX.1-dev.tar -C /path/to/ComfyUI/models/ ``` 确保将解压后的 `flux1-dev.safetensors` 文件放置于指定路径 `/path/to/ComfyUI/models/unet/` 下以便后续调用[^2]。 另外还需要获取额外的支持库来增强系统的兼容性和扩展性,比如 bitsandbytes 插件可以这样获得: ```bash git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git cd ComfyUI_bitsandbytes_NF4 pip install . ``` 完成上述步骤之后就可以启动应用程序了。 ### 使用实例展示 下面给一段简单的 Python 脚本来演示如何利用 ComfyUI 结合 FLUX.1 实现基本的任务处理逻辑: ```python from comfyui import load_model, generate_image model_path = "/path/to/ComfyUI/models/unet/flux1-dev.safetensors" loaded_model = load_model(model_path) prompt_text = "A beautiful sunset over mountains." generated_img = generate_image(loaded_model, prompt=prompt_text) ``` 这段代码展示了加载预训练好的 FLUX.1 模型并通过给定的文字描述 (`prompt`) 来创建一张新的片的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值