[ComfyUI]Flux最新加速插件wavespeed,出图速度翻一倍

这个插件太牛了,出图速度翻一倍,图片质量还很好,强烈推荐

0****1

介绍

最近ComfyUI在卷这个加速插件,上一个teacache刚出来没几天,就出来了个更强的,我直接省了测试teacache了,直接上手最好用的wavespeed,测试下来,出图时间省了一半,图片质感又没缺失多少,真是完美啊。

另外这个wavespeed不仅针对图片加速,对生成视频也可以加速,视频这块后面给大家分享。

经过我自己测试,我4090电脑跑1024x1024分辨率的图速度翻一倍,太开心了。

下图就是我测试的效果图,嘎嘎猛,抽卡的快乐回来了。

左下角是出图的时候,左边是原图出图时间,中间是用上wavespeed里面一个加速功能的时间,右边是用了wavespeed2个功能的出图时间,直接翻倍了。

02

**相关安装
**

插件地址:

这个插件节点管理器里面不行,需要通过Git URL安装

安装好了记得重启服务。

03

操作说明

先来简单说一下 wavespeed 的原理吧,下面是官方的说明:

受TeaCache和其他去噪缓存算法的启发,我们引入了第一块缓存(FBCache),以使用第一个变压器块的剩余输出作为缓存指示符。如果第一个 Transformer 块的当前残差输出与之前的残差输出之间的差异足够小,我们可以重用之前的最终残差输出并跳过所有后续 Transformer 块的计算。这可以显著降低模型的计算成本,在保持高精度的同时实现高达 2 倍的加速。

要使用第一个块缓存,只需添加 wavespeed->Apply First Block Cache 在Load Diffusion Model节点之后将节点添加到工作流程,并将residual_diff_threashold值调整为适合模型的值,例如:对于具有fp8_e4m3fn_fast和 28 个步骤的flux-dev.safetensors为0.12 。预计速度将提高 1.5 倍至 3.0 倍,并且精度损失可接受。

它支持FLUX 、 LTXV (native and non-native) 、 HunyuanVideo (native)和SDXL等多种模型。

要使用这个插件加速技术,对应的节点如下,在加载模型后面直接跟上这个Apply First Block Cache节点即可,很简单。

使用的话主要点有几点:

• 步骤至少要28步,这个加速主要是后半部分速度提升很快,如果步数太少了没效果。

• 权重推荐是设置0.12,数字越大,出图越快,但是值大了图就模糊了。

• 要用原生模型 dev fp16或者fp 8,不要用微调版本

这一步速度提升大概是1.7倍。这还只是第一重提速,官方说明后面还有一个增强的,利用了 torch.compile的技术,在上面 Apply First Block Cache节点后面再添加了一个 Compile Model+的节点即可。

window电脑使用这个torch.compile好像会报错,如果你也遇到如下这个错误,那就需要安装triton了。

我查了资料,好像是对window电脑不是很兼容,需要自己去下载文件编译安装triton。

https://github.com/woct0rdho/triton-windows/releases/tag/v3.1.0-windows.post5

下载你电脑对应的python版本的包,我这里ComfyUI对应的是python 10,所以我就下载

triton-3.1.0-cp310-cp310-win_amd64.whl

回头这3个我都放网盘

然后我把这个文件放到了ComfyUI下面的python目录下

最后进入这个目录下的命令窗口,输入命令:

python.exe -m install triton-3.1.0-cp310-cp310-win_amd64.whl

就安装上这个 triton依赖包了。

然后就可以用了。

我自己测试下来,同时使用Apply First Block Cache节点和Compile Model+节点,出图速度提升了2.3倍。

注意:使用 FP8 量化编译模型不适用于 RTX 3090 等 Ada 之前的 GPU,您应该尝试使用 FP16/BF16 模型或删除编译节点。

完整的工作流如下,我做了3种对比。

我另外测试的几组图

04

总结

以上就是最新的加速插件wavespeed介绍了,太强了我只能说,Flux很好用,但就是出图太慢了,这下有了这个优化技术,大大提高了效率。

技术的迭代是飞快的,要关注最新的消息才不会掉队。

关注我,每天分享最新的ComfyUI技术前沿。

今天介绍的工作流和插件我都打包好了。

工作流获取

写在最后

常用工作流已经给各位小伙伴打包好了,可以按需自取,无偿分享。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

### ComfyUI Flux 组合概述 ComfyUI Flux 是一种基于黑森林实验室(Black Forest Labs)开发的 FLUX.1 模型与 ComfyUI 平台相结合的技术解决方案。该组合旨在为用户提供强大的像生成能力和高效的处理流程。 #### 版本说明 FLUX.1 提供三个不同版本: - **FLUX.1-pro**:最高级别的性能表现,支持最先进像生成功能以及顶级提示词解析能力。此版本仅通过官方 API 访问并提供企业级定制服务[^4]。 - **FLUX.1-dev**:从 FLUX.1-pro 中提取而来的开源版,具备相似质量和效率特性,适用于研究和技术探索场景。需要注意的是,尽管其功能强大,但不允许用于商业用途。 - **FLUX.1-schnell**:针对本地开发和个人应用优化过的快速运行模式,在 Apache 2.0 协议下开放源码发布。相比其他两个版本而言,它拥有更快的速度和更低资源消耗特点。 对于大多数个人开发者来说,推荐使用 FLUX.1-dev 或者 FLUX.1-schnell 进行实验和发展工作。 ### 安装配置指南 为了安装和配置 ComfyUIFLUX.1 的集成环境,请按照如下操作执行: 下载所需文件: ```bash wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar tar -xf FLUX.1-dev.tar -C /path/to/ComfyUI/models/ ``` 确保将解压后的 `flux1-dev.safetensors` 文件放置于指定路径 `/path/to/ComfyUI/models/unet/` 下以便后续调用[^2]。 另外还需要获取额外的支持库来增强系统的兼容性和扩展性,比如 bitsandbytes 插件可以这样获得: ```bash git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git cd ComfyUI_bitsandbytes_NF4 pip install . ``` 完成上述步骤之后就可以启动应用程序了。 ### 使用实例展示 下面给一段简单的 Python 脚本来演示如何利用 ComfyUI 结合 FLUX.1 实现基本的任务处理逻辑: ```python from comfyui import load_model, generate_image model_path = "/path/to/ComfyUI/models/unet/flux1-dev.safetensors" loaded_model = load_model(model_path) prompt_text = "A beautiful sunset over mountains." generated_img = generate_image(loaded_model, prompt=prompt_text) ``` 这段代码展示了加载预训练好的 FLUX.1 模型并通过给定的文字描述 (`prompt`) 来创建一张新的片的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值