这个插件太牛了,出图速度翻一倍,图片质量还很好,强烈推荐
0****1
介绍
最近ComfyUI在卷这个加速插件,上一个teacache刚出来没几天,就出来了个更强的,我直接省了测试teacache了,直接上手最好用的wavespeed,测试下来,出图时间省了一半,图片质感又没缺失多少,真是完美啊。
另外这个wavespeed不仅针对图片加速,对生成视频也可以加速,视频这块后面给大家分享。
经过我自己测试,我4090电脑跑1024x1024分辨率的图速度翻一倍,太开心了。
下图就是我测试的效果图,嘎嘎猛,抽卡的快乐回来了。
左下角是出图的时候,左边是原图出图时间,中间是用上wavespeed里面一个加速功能的时间,右边是用了wavespeed2个功能的出图时间,直接翻倍了。
02
**相关安装
**
插件地址:
这个插件节点管理器里面不行,需要通过Git URL安装
安装好了记得重启服务。
03
操作说明
先来简单说一下 wavespeed 的原理吧,下面是官方的说明:
受TeaCache和其他去噪缓存算法的启发,我们引入了第一块缓存(FBCache),以使用第一个变压器块的剩余输出作为缓存指示符。如果第一个 Transformer 块的当前残差输出与之前的残差输出之间的差异足够小,我们可以重用之前的最终残差输出并跳过所有后续 Transformer 块的计算。这可以显著降低模型的计算成本,在保持高精度的同时实现高达 2 倍的加速。
要使用第一个块缓存,只需添加 wavespeed->Apply First Block Cache 在Load Diffusion Model节点之后将节点添加到工作流程,并将residual_diff_threashold值调整为适合模型的值,例如:对于具有fp8_e4m3fn_fast和 28 个步骤的flux-dev.safetensors为0.12 。预计速度将提高 1.5 倍至 3.0 倍,并且精度损失可接受。
它支持FLUX 、 LTXV (native and non-native) 、 HunyuanVideo (native)和SDXL等多种模型。
要使用这个插件加速技术,对应的节点如下,在加载模型后面直接跟上这个Apply First Block Cache节点即可,很简单。
使用的话主要点有几点:
• 步骤至少要28步,这个加速主要是后半部分速度提升很快,如果步数太少了没效果。
• 权重推荐是设置0.12,数字越大,出图越快,但是值大了图就模糊了。
• 要用原生模型 dev fp16或者fp 8,不要用微调版本
这一步速度提升大概是1.7倍。这还只是第一重提速,官方说明后面还有一个增强的,利用了 torch.compile的技术,在上面 Apply First Block Cache节点后面再添加了一个 Compile Model+的节点即可。
window电脑使用这个torch.compile好像会报错,如果你也遇到如下这个错误,那就需要安装triton了。
我查了资料,好像是对window电脑不是很兼容,需要自己去下载文件编译安装triton。
https://github.com/woct0rdho/triton-windows/releases/tag/v3.1.0-windows.post5
下载你电脑对应的python版本的包,我这里ComfyUI对应的是python 10,所以我就下载
triton-3.1.0-cp310-cp310-win_amd64.whl
回头这3个我都放网盘
然后我把这个文件放到了ComfyUI下面的python目录下
最后进入这个目录下的命令窗口,输入命令:
python.exe -m install triton-3.1.0-cp310-cp310-win_amd64.whl
就安装上这个 triton依赖包了。
然后就可以用了。
我自己测试下来,同时使用Apply First Block Cache节点和Compile Model+节点,出图速度提升了2.3倍。
注意:使用 FP8 量化编译模型不适用于 RTX 3090 等 Ada 之前的 GPU,您应该尝试使用 FP16/BF16 模型或删除编译节点。
完整的工作流如下,我做了3种对比。
我另外测试的几组图
04
总结
以上就是最新的加速插件wavespeed介绍了,太强了我只能说,Flux很好用,但就是出图太慢了,这下有了这个优化技术,大大提高了效率。
技术的迭代是飞快的,要关注最新的消息才不会掉队。
关注我,每天分享最新的ComfyUI技术前沿。
今天介绍的工作流和插件我都打包好了。
工作流获取

写在最后
常用工作流已经给各位小伙伴打包好了,可以按需自取,无偿分享。
这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

若有侵权,请联系删除