目录
一:回顾
上一节我们讲解了导致过拟合和欠拟合的原因,并且使用pytorch实现多项式的不同形式下的结果,这次将介绍解决过拟合和欠拟合的解决方法。
二:权重衰减
前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。 我们总是可以通过去收集更多的训练数据来缓解过拟合。 但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。 假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。
要保证权重向量比较小, 最常用方法是将其范数作为惩罚项加到最小化损失的问题中。 将原来的训练目标最小化训练标签上的预测损失, 调整为最小化预测损失和惩罚项之和。
现在,如果我们的权重向量增长的太大, 我们的学习算法可能会更集中于最小化权重范数||w||2,在之前的线性回归的例子中,我们的损失由下式给出:
为了惩罚权重向量的大小, 我们必须以某种方式在损失函数中添加‖w‖2, 但是模型应该如何平衡这个新的额外惩罚的损失? 实际上,我们通过正则化常数λ来描述这种权衡, 这是一个非负超参数,我们使用验证数据拟合:注意这里的平方是为了求导方便,当我们取一个二次函数的导数时, 2和1/2会抵消,以确保更新表达式看起来既漂亮又简单。 为什么在这里我们使用平方范数而不是标准范数(即欧几里得距离)? 欧几里得距离是对两个向量各个维度上差的平方求和再开根号,而平方范数只是对向量各个维度上的平方进行求和,不需要开根号。因此,平方范数在计算上更加简单和高效,但是没有欧几里得距离具有的几何意义。:导数的和等于和的导数。
此外,为什么我们首先使用w2范数,而不是w1范数。 事实上,这个选择在整个统计领域中都是有效的和受欢迎的。 w2正则化线性模型构成经典的岭回归(ridge regression)算法, w1正则化线性回归是统计学中类似的基本模型, 通常被称为套索回归(lasso regression)。 使用w2范数的一个原因是它对权重向量的大分量施加了巨大的惩罚。 这使得我们的学习算法偏向于在大量特征上均匀分布权重的模型。 在实践中,这可能使它们对单个变量中的观测误差更为稳定。 相比之下,w1惩罚会导致模型将权重集中在一小部分特征上, 而将其他权重清除为零。 这称为特征选择(feature selection),这可能是其他场景下需要的。
L2正则化回归的小批量随机梯度下降更新如下式:(这个公式可以由拉格朗日法得出来)
先将w进行限制C(w小于c,C是范数的半径),进而变成w-c小于等于0,然后通过拉格朗日法得到原问题式子
为什么要消除C?消除C的好处:C需要提前设置,然后再求λ。优化后只有λ后,只需要调整λ即可,也是常说的‘炼丹’,不过好像λ有个标准,具体是多少可以去搜搜看。
上面绿色的损失,经过转换后C会被消除掉,因为绿色的损失L和红色的损失L他们λ(拉格朗日乘子)的最值不一样,但是他们的w是一样的,都是0,为什么呢?因为对于绿色的损失对w的求导是:j(w)+λ||w||,又因为函数在最值处的导数为0,使用绿色和红色的两个的导数是相等的,所以是等价的。 还有一种解释是:绿色L是范数的损失J(w),它的方向L2范数方向相反,(因为都是指向梯度小的方向,想想等高线就明白了), 所以相加等于0。
所以最后得到公式,使用优化后的红色损失
损失代码:l = loss(net(X), y) + lambd * l2_penalty(w),调用backword后就是权重更新那个式子,具体为什么要这样做,结合文章的标题图片和上面的推导就能明白了(等高线的中间的梯度最小,找到平衡点λ)。
我们根据估计值与观测值之间的差异来更新w。 然而,我们同时也在试图将w的大小缩小到零。 这就是为什么这种方法有时被称为权重衰减。 我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。 与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。 较小λ值对应较少约束的w, 而较大的λ值对w的约束更大。
我们只看红线部分,结果训练后最后得到的拟合曲线经过泰勒展开后是如下式子,我们要做的是将二次幂以上的w尽量的小,只有拟合处理的曲线才更平滑,也就尽量的避免了过拟合了,第0想可以想象成偏置,第二项可以当成直线,改变斜率w不会影响直线的形状,所以他们两个都不做惩罚。
是否对相应的偏置b2进行惩罚在不同的实践中会有所不同, 在神经网络的不同层中也会有所不同。 通常,网络输出层的偏置项不会被正则化。
三:代码实现,使用不同λ观察不同的结果
我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。 为了使过拟合的效果更加明显,我们可以将问题的维数增加到d=200(高维的线性回归往往更容易造成过拟合), 并使用一个只包含20个样本的小训练集。
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
首先,我们将定义一个函数来随机初始化模型参数。
def init_params():
w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
return [w, b]
定义L2范数惩罚项
def penalty(w):
return torch.sum(w,pow(2)) / 2
所以我们通过d2l.linreg
和d2l.squared_loss
导入它们。 唯一的变化是损失现在包括了惩罚项。
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
# 增加了L2范数惩罚项,
# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数是:', torch.norm(w).item())
我们现在用lambd = 0
禁用权重衰减后运行这个代码。 注意,这里训练误差有了减少,但测试误差没有减少, 这意味着出现了严重的过拟合。
train(lambd=0)
下面,我们使用权重衰减来运行代码。 注意,在这里训练误差增大,但测试误差减小。 这正是我们期望从正则化中得到的效果。
特别注意:weight_decay
不是指学习率,它是一种正则化技术。在优化损失函数的过程中,除了最小化训练数据的损失,我们还希望模型的权重不要过大,从而避免过拟合。正则化技术就是为了实现这个目标。其中,weight_decay
是L2正则化的一种形式,它通过惩罚模型权重的平方和来使得权重趋向于较小的值。在实际训练过程中,weight_decay
通常会乘以一个超参数λ,作为正则化项的系数。因此,weight_decay
的值越大,正则化项对损失函数的影响就越大,从而更加强制模型的权重不要过大,所以权重w的值会越来越小。看上面的权重更新的公式和多项式的图就明白了。
所有项目代码+UI界面
视频,笔记和代码,以及注释都已经上传网盘,放在主页置顶文章