第四章:数据与LLM的三种"联姻"方式
在前面的内容中,我们讨论了RAG系统如何处理不同层次的查询。现在,让我们转向一个更加根本的问题:假如获取到数据后,如何将外部数据与LLM结合起来?论文提出了三种主要的方法,每种方法都有其独特的优势和挑战。让我们逐一深入探讨。
4.1 上下文方法(Context)
这种方法就像是给LLM一个即时的"记忆补丁"。每次询问LLM时,我们都会同时提供相关的上下文信息。
工作原理:
-
接收用户查询
-
从外部数据源检索相关信息
-
将检索到的信息与用户查询一起作为输入提供给LLM
-
LLM基于这个增强的输入生成回答
优势:
-
灵活性高:可以根据每个查询动态选择相关信息
-
无需重新训练模型:可以直接使用预训练的LLM
-
可解释性强:我们知道模型使用了哪些额外信息
挑战:
-
上下文长度限制:LLM通常有输入长度限制,限制了可以提供的上下文量
-
检索质量依赖:回答质量高度依赖于检索系统的性能
-
计算成本:每次查询都需要进行检索,可能增加延迟
实现示例:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-72B-Instruct")
def get_context(query):
# 这里应该是你的检索逻辑
return "相关上下文信息..."
query = "什么是量子计算?"
context = get_context(query)
input_text = f"上下文:{context}\n问题:{query}\n回答:"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
4.2 小模型方法(Small model)
这种方法就像是给LLM配备了一个专业的"助手"。我们训练一个小型模型来处理特定任务,如信息检索或知识整合,然后将这个小模型的输出提供给LLM。
工作原理:
-
训练一个专门的小模型(如检索器或知识整合器)
-
接收用户查询
-
小模型处理查询,生成相关信息或知识表示
-
将小模型的输出与用户查询一起提供给LLM
-
LLM生成最终回答
优势:
-
效率:小模型可以更快速地处理大量数据
-
专业性:可以为特定任务定制小模型
-
模块化:可以轻松更新或替换小模型,而不影响主要的LLM
挑战:
-
训练复杂性:需要额外的训练过程和数据
-
集成难度:需要设计有效的方法将小模型的输出与LLM结合
-
性能瓶颈:如果小模型性能不佳,可能会限制整个系统的表现
实现示例:
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
import torch
# 假设这是我们的小模型,用于生成查询的向量表示
retriever_tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
retriever_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
# 主要的LLM
lm_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")
lm_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-72B-Instruct")
def get_query_embedding(query):
inputs = retriever_tokenizer(query, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = retriever_model(**inputs)
return outputs.last_hidden_state.mean(dim=1)
query = "什么是量子计算?"
query_embedding = get_query_embedding(query)
# 在实际应用中,我们会用这个嵌入来检索相关文档
# 这里我们简单地假设我们得到了一些相关信息
retrieved_info = "量子计算是利用量子力学现象进行计算的技术..."
input_text = f"基于以下信息:{retrieved_info}\n回答问题:{query}"
input_ids = lm_tokenizer.encode(input_text, return_tensors="pt")
output = lm_model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
response = lm_tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
4.3 微调方法(Fine-tuning)
这种方法就像是给LLM进行"专业培训"。我们使用特定领域的数据对预训练的LLM进行进一步的训练,使其能够更好地处理特定类型的任务或领域知识。
工作原理:
- 准备特定领域或任务的数据集
- 使用这些数据对预训练的LLM进行进一步训练
- 在推理时,直接使用微调后的模型处理用户查询
优势:
-
性能:在特定领域或任务上可以获得最佳性能
-
效率:推理时不需要额外的检索步骤
-
知识整合:可以将大量领域知识直接整合到模型中
挑战:
-
计算成本:微调大型模型需要大量计算资源
-
数据需求:需要大量高质量的领域特定数据
-
灵活性降低:微调后的模型可能在其他领域表现下降
实现示例:
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import torch
from datasets import load_dataset
# 加载预训练模型
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 准备数据集(这里使用虚构的数据集名称)
dataset = load_dataset("quantum_physics_dataset")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# 设置训练参数
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
)
# 创建Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
# 开始微调
trainer.train()
# 使用微调后的模型
query = "什么是量子纠缠?"
input_ids = tokenizer.encode(query, return_tensors="pt")
output = model.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
每种方法都有其适用的场景:
-
上下文方法适合需要高度灵活性,或者经常需要处理新信息的场景。
-
小模型方法适合需要专门处理某些复杂任务(如高级检索或知识推理)的场景。
-
微调方法适合在特定领域需要深度专业知识,且有大量相关数据可用的场景。
在实际应用中,这三种方法往往是结合使用的。例如,我们可能会先对LLM进行领域微调,然后在使用时还配合上下文方法提供最新信息。或者,我们可能会使用经过微调的小模型来进行检索,然后将检索结果作为上下文提供给主要的LLM。
选择哪种方法,或如何组合这些方法,取决于具体的应用需求、可用资源、以及对模型性能、效率和灵活性的权衡。
如何学习大模型?
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】