Agent展现出了解决复杂任务的卓越能力。
-
目前大多数Agent是被动式的,限制了它们在需要预见性和自主决策的场景中的有效性。
-
Agent2.0 主动发起任务,无需明确的人类指令。从被动响应转变为能够主动预测并发起任务的主动代理。这种转变不仅减轻了用户的认知负担,还能够帮助识别人类未明确表达的潜在需求,从而为用户提供更全面和无缝的服务。
- 左边Agent,被动式接受用户查询,然后生成响应
- 右边Agent,主动式Agent基于环境观察推断任务,并相应地提出可能的协助请求。
一、ProactiveAgent流程图
1、数据收集与处理
-
环境监控与事件收集:开发基于Activity Watcher的监控软件,捕获用户与计算机系统的交互细节,包括键盘和鼠标操作、访问的网页和使用的开发工具。
-
事件合并与文本描述:将原始数据合并成逻辑上连贯的段落,并使用语言模型将结构化数据转换为更自然的文本描述。
2、场景生成
-
种子工作生成:使用GPT-4o基于人类标注者收集的种子工作创建各种任务,这些任务可能是用户在特定类别下执行的,如编码、写作或日常生活。
-
实体生成:为任务可能涉及的实体(如浏览器、软件和工具)生成所有可能的实体。
-
场景细化:通过添加更多细节(如实体状态或日期时间)来完善场景,并根据收集的事件为每个特定上下文生成示例事件。
3、事件生成
-
用户活动生成:对于每个场景,用户代理首先描述其在模拟环境中完成工作的活动和行动。
-
事件详细生成:环境健身房接受用户活动和行动,逐一生成详细事件。
-
状态维护:环境健身房在生成新事件时更新实体的状态和属性,并根据最新环境状态生成下一个事件。
4、代理预测与任务执行
-
预测任务:主动代理接收新事件后,更新其记忆,并结合新旧事件及与用户的对话历史,提出可能的任务。
-
执行任务:一旦用户接受预测任务,代理将在环境健身房中执行任务,产生关于代理与环境交互的多个事件。
5、奖励模型评估
-
模型训练:使用人类标注的数据训练LLaMA-3.1-8B-Instruct模型,并与几个基线模型进行比较,以展示其优越性。
-
评估指标:使用奖励模型对预测任务进行二元分类,并与人类标注结果进行比较,计算召回率、精确度、准确度和F1-Score。
https://github.com/thunlp/ProactiveAgent https://arxiv.org/abs/2410.12361
二、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】