退化平行四边形

A-平行四边形

题目描述:


给出四个点,判断是否构成不退化的平行四边形。(退化指存在三点共线)

 

 

输入描述:


本题有多组数据,第一行是数据组数 T。
每组数据输入四行,每行两个整数,分别为x1,y1,x2,y2,x3,y3,x4,y4,描述四个点的坐标(x1,y1),(x2,y2),(x3,y3),(x4,y4)

 

输出描述:


对每组数据输出一行一个字符串 YES 或者 NO(全部大写),分别表示是或不是平行四边形。

 

输入:


4
0 0 
1 1 
0 1 
1 0
0 1 
1 1 
1 0 
0 0
0 0 
1 1 
2 2 
3 3
4 2 
5 3 
6 6 
9 -10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

 

 

输出:


YES
YES
NO
NO
1
2
3
4
 

说明:


样例的第 1,2 组数据中的点组成了正方形,自然是平行四边形。
第三组数据四个点共线,不是平行四边形。最后一组数据四个点不组成平行四边形。 

 

备注:


对于 50% 的数据,不存在三点共线。

对于 100%的数据,1≤T≤10 ^ 4,∣xi∣∣yi∣ ≤ 10 ^ 9。

 

 题解:

经过我们小组的热烈讨论,并且搜集资料,有以下题解:

一开始我们打算用向量来解开这道题目,但判断三点共线比较麻烦,我们就采用斜率来解题。

具体过程如下

平行于X轴的直线的斜率为零,平行于Y轴的直线的斜率不存在。
而对于过两个已知点(x1,y1)和(x2,y2)的直线,若x1≠x2,则该直线的斜率为k=(y1-y2)/(x1-x2)。

根据平行四边形的判定条件:
两组对边分别平行的四边形是平行四边形
所以判断
(x1,y1)(x2,y2)两点之间的斜率是否与(x3,y3)(x4,y4)之间的斜率相等
(x1,y1)(x3,y3)两点之间的斜率是否与(x2,y2)(x4,y4)之间的斜率相等
(x1,y1)(x4,y4)两点之间的斜率是否与(x2,y2)(x3,y3)之间的斜率相等

这3个条件,只要有两种条件成立(即1,2或者1,3),则该四边形是平行四边形

 

代码:

#include <bits/stdc++.h>
using namespace std;
int x1,y1,x2,y2,x3,y3,x4,y4;
bool pd()
{
    int count=0;
    if((y1-y2)*(x3-x4)==(y3-y4)*(x1-x2))
        count++;
    if((y1-y3)*(x2-x4)==(y2-y4)*(x1-x3))
        count++;
    if((y1-y4)*(x2-x3)==(y2-y3)*(x1-x4))
        count++;
    if(count==2)
        return true;
    else
        return false;
}
int main()
{
    int T;
    cin>>T;
    for(int i=1;i<=T;i++)
    {
        cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
        if(pd())
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值