矩阵与行列式的区别 行列式简单理解(二三阶)

本文介绍了矩阵与行列式的区别,包括它们的定义、相等性、加法、数乘以及初等变换的影响。同时,通过二三阶行列式,解释了行列式的几何意义,如二维向量的有向面积和三维向量的有向体积,并探讨了行列式为零时的几何特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 

矩阵与行列式的区别

行列式简单理解(二三阶)


矩阵与行列式的区别

如下:
  1. 矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。只有方阵才可以定义它的行列式,而对于长方阵不能定义它的行列式。
  2. 两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。
  3.两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),只能将一行(或列)的元素相加,其余元素照写。
  4.数乘矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提公因数也如此。
  5.矩阵经初等变化,其秩不变;行列式经初等变化,其值可能改变:换法变换要变号,倍法变换差倍数;消法变换不改变。

行列式的数值有什么意义:数值就是长度,面积,体积,质量 ,。。。。。。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值