一、上周工作
二、本周计划
实验、修改代码、论文、视频学习
三、完成情况
3.1 实验
3.1.1 DCNet:
FlatVelA:dense_CBAM2_mae+logcosh_0.0001
CurveFaultA:dense_CBAM2_mae+logcosh_0.0001
CurveVelA:加了dropout=0.2
SEGSimulateData:训练1600,测试100
dense_CBAM2_mae+logcosh_0.001(验证集50)、dense_CBAM2_mae+logcosh_0.001(验证集50)
——>后续加dropout
3.1.2 InversionNet:mse_0.0001
batchsize64:四个数据集
batchsize128:四个数据集
3.1.3 DDNet70:
0.001_batchsize64:四个数据集
3.1.4 消融
去掉CBAM:openfwi四个数据集
3.1.5 FCNVMB:mse_0.001
SEGSimulateData:训练1600,测试100
3.2 修改代码
1. 加载数据集:批量加载mat文件
2. 训练:适应ddne和seg
3. 图像展示:
1)展示seg/openfwi数据集 预测速度图和真实的对比
2)展示seg/openfwi数据集的预测/真实速度图(单个)
3)seg和openfwi 单个速度值图
4. 跑seg的时候
论文
四、存在的主要问题
1. 消融实验(去掉CBAM)跑ff数据集,在130epoch之后ssim和uqi两个指标突然增高,超过加入cbam的网络
2. FCNVMB归一化的影响?
——目前自己的网络如果不归一化,会报值溢出的错误,因为损失函数中使用到了cosh函数。还未跑实验
RuntimeWarning: overflow encountered in cosh
归一化后,从测试结果看,指标比不上FCNVMB。
3. 验证集震荡的原因可能有:
- 数据问题,比如训练集和验证集相差太大,数据量太小;
- batchsize太小;
- loss不合适;
- 学习率太大,模型陷入了局部最优点;
- 模型的网络结构存在问题;······
4. TypeError: only size-1 arrays can be converted to Python scalars
5. RuntimeWarning: overflow encountered in cosh(主要问题)
6. ValueError: only one element tensors can be converted to Python scalars