李宏毅深度学习笔记02(Basic Concept)

本文深入探讨了机器学习模型误差的两大来源——偏差(bias)和方差(variance)。偏差衡量模型预测与理想输出的差距,方差则表示模型在不同数据集上的预测差异。欠拟合(高偏差)意味着模型过于简单,而过拟合(高方差)则是模型过度复杂。解决方法包括增加数据量、使用更复杂或简单的模型以及正则化等。理解并平衡偏差与方差对于优化模型性能至关重要。
摘要由CSDN通过智能技术生成

model的误差来源

error的两大来源bias(偏差)和variance(方差)。
误差:机器学习就是寻找一个函数,然后给它一个输入,就能得到一个理想的输出,f head是理论上找到的最佳函数,f star是我们用模型预测出来的函数,两者的差值就是误差。
bias:估计值的期望等于假设值,就是无偏差,反之就是有偏差。当样本数越来越大时,样本均值才无限接近于期望。
variance:方差表达的是数据的离散程度。
在这里插入图片描述
Bias:枪打的准不准;Variance:枪打的散不散。
Bias是f head 和f star 的距离;Variance是f star与f bar的距离。

两大来源产生的原因

通过结合实际的实验说明,来观察两者是怎样产生的。
我们要知道bias有多大,就要做多次的实验,确定多个f star,然后求出f star期望值。首先我们可以设计100组实验,每组实验10个数据,然后思考,对于这样的数据,我们选用什么model比较好,哪一种的model最后的bias比较小呢?接着,我们就开始比较不同的model和performance,比如先用一个一次model,就得到了100个不同的f star。之后,进一步比较不同的model中(每种model有100个f star)的表现。有了很多不同的 f star

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值