1.螺旋矩阵II
1.1题目实例
给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/spiral-matrix-ii
1.2解题思路
如图所示的一个33网格,除去最中间的格子,我们只需要顺时针的一个循环就能完成数字的写入。那么关键在于一个循环时,每条边所要包含的空格是怎样的。如图所示的包含区间是左闭右开的,所以在写循环时,要严格保证区间的一致性。
同时也有其他需要注意的点。比如如果空格数更多,是一个55的矩阵,那么需要的循环数是不同的,这样的矩阵需要循环两次。并且第一次循环的起始位置是(0,0),而第二次循环的起始位置是(1,1),并且第一次循环每条边的空格数是4,而第二次循环就变成了2,这些也要在代码中有所体现。
1.3代码实现
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0));
int loop = n/2;//循环次数
int offset = 1;//用于计算每条边的空格数
int iStart = 0, jStart = 0;//每次循环的起始位置
int i = 0, j = 0;
int mid = n/2;//存在最中间空格时,其位置
int cnt = 1;
while(loop --)
{
i = iStart;
j = jStart;
for(; j < n + jStart - offset; j++)//上边
{
res[iStart][j] = cnt++;
}
for(; i < n + iStart - offset; i++)//右列
{
res[i][j] = cnt++;
}
for(; j > jStart; j--)//下边
{
res[i][j] = cnt++;
}
for(; i > iStart; i--)//左列
{
res[i][j] = cnt++;
}
iStart ++;
jStart ++;
offset += 2;
}
if(n % 2 == 1)//n为奇数时,给中间空格赋值
{
res[mid][mid] = cnt;
}
return res;
}
};
2.螺旋矩阵
2.1题目实例
给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/spiral-matrix
2.2解题思路
1.首先设定上下左右边界。
2.其次向右移动到最右,此时第一行因为已经使用过了,可以将其从图中删去,体现在代码中就是重新定义上边界。
3.判断若重新定义后,上下边界交错,表明螺旋矩阵遍历结束,跳出循环,返回答案。
4.若上下边界不交错,则遍历还未结束,接着向下向左向上移动,操作过程与第一,二步同理。
5.不断循环以上步骤,直到某两条边界交错,跳出循环,返回答案。
2.3代码实现
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector <int> ans;
if(matrix.empty()) return ans; //若数组为空,直接返回答案
int u = 0; //赋值上下左右边界
int d = matrix.size() - 1;
int l = 0;
int r = matrix[0].size() - 1;
while(true)
{
for(int i = l; i <= r; ++i) ans.push_back(matrix[u][i]); //向右移动直到最右
if(++ u > d) break; //重新设定上边界,若上边界大于下边界,则遍历遍历完成,下同
for(int i = u; i <= d; ++i) ans.push_back(matrix[i][r]); //向下
if(-- r < l) break; //重新设定右边界
for(int i = r; i >= l; --i) ans.push_back(matrix[d][i]); //向左
if(-- d < u) break; //重新设定下边界
for(int i = d; i >= u; --i) ans.push_back(matrix[i][l]); //向上
if(++ l > r) break; //重新设定左边界
}
return ans;
}
};