Few-Shot Learning for New User Recommendation inLocation-based Social Networks

WWW 2020

我们专注于调查地理影响,包括地理便利性和地理依赖性。此外,我们利用基于度量学习的少量学习来充分利用用户登录并促进用户和企业之间的匹配。

大多数现有作品仅通过测量用户与企业之间的访问距离来调查用户与企业之间的关系,这导致了两个限制:(面对的问题)

1.距离可能不是区分不同用户入住的交通便利性的准确指标。

2.在提出建议时,附近企业之间的相互依赖关系没有得到很好的模拟。

在本次工作中,我们强调应该纳入地理便利性和依赖性,以全面表达地理影响。

图1:地理便利性

两个用户都距离A五英里,但是距离指标并没有提供太多的权力来判断谁更有可能访问A点。如果我们知道用户1倾向于开车,用户2倾向于步行,我们可以衡量实际运输,基于便利性而不是原始距离。

图2:地理依赖性

A和B提供相同的服务,并且可以通过相同的方式被用户访问,。如果不考虑两个企业的邻里信息,推荐系统不可能区别他们的偏好。但是在现实中,邻里服务永远不会相同。如果在提出建议时,对邻域信息进行建模,它可以提供额外的知道,以更全面地了解用户的决策过程,从而提供更准确的建议。

我们通过优化两种类型的实例来应用于度量学习的一次性学习框架。

我们构造支持实例和查询实例。每个实例由一个用户和一个业务组成。支持实例被标记为实例并用作引用。查询实例依赖于引用进行推理。该模型通过支持和查询实例之间的迭代推理而发展。

贡献点:

1.将地理影响分解为地理便利性和依赖性。地理便利性模拟了check-in的相关交通影响。地理依赖性建模使我们的模型具有邻域意识

2.我们将元学习应用于位置的推荐任务,并将问题表述为基于度量学习的few-short学习

问题指定和设置

用户的签到被表示为元组的集合{(b,u)},B,U分别是业务集和用户集。新用户推荐的任务是对给定业务的用户进行排名。目标是让真正的新用户排名高于其他候选人。这里的候选人都是尚未登记此业务的用户。

few-short学习能够充分利用训练实例,可能会提高推荐性能,我们将用户推荐任务描述为一个基于度量学习的few-short learning问题。我们假设可以访问一组训练任务,其中每个训练任务T对于关于业务b的新用户预测。在训练期间,我们的目标是学习一个广义的相似性度量,将一组用户业务元组与每个任务的一下引用进行比较,每个任务都设计为模拟few-short设置。任务被一个接一个地优化。对于每个任务,每次k个观察到的check-in元组被随机抽样作为参考,表示为R。观察到的check-in元组指的是业务用户对(b,u),用户u在数据集中签入业务b。

两个查询集,正查询集,负查询集。可以通过比较两种相似性来优化模型,一个是介于肯定询问和参考之间,另一个是对每项业务的否定查询和引用。其中,排名损失衡量模型在多大程度上区分了一组引用的肯定查询和否定查询。优化运行了多次迭代,每个业务都优化了不止一次。对业务的每次优化,我们可能选择不同的观察到的签入作为参考和肯定查询。同样,我们可以将不同的假check-in构造为否定查

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值