方差代价函数

文章讨论了在预测环境中,通过计算预测值与实际值之间的平方误差(代价函数),寻找自变量w的最佳值,使得误差最小。使用豆豆散点图展示数据,通过调整w的取值,找到误差均方最小的w值,从而实现对数据的最优拟合。
摘要由CSDN通过智能技术生成

差值有正负,所以相互之间会发生抵消作用,这就是用差值评估预测误差的问题
所以我们对一批豆豆预测的结果和标准答案之间的平方误差越小,说明偏离事实越小

对于环境中的问题数据预测时产生不同的误差,而利用这个“代价函数”的最低点的w值,这时候预测函数也就很好完成了对数据的拟合。

x和y都是通过观测统计而来的已知数,成为了代价函数的已知参数部分,而w成为了自变量,误差代价e是因变量。

代码

import numpy as np
import dataset
from matplotlib import pyplot as plt
n=100
# 画豆豆散点图
xs, ys = dataset.get_beans(n)
plt.title("size-toxicity Fuction", fontsize=12)
plt.xlabel('bean size')
plt.ylabel("toxicity")
plt.scatter(xs, ys)

w=0.1
y_pre = w * xs
plt.plot(xs, y_pre)
plt.show()

ws=np.arange(0,3,0.1)
es= []
for w in ws:
    y_pre = w * xs
    # 计算误差的均方
    e=(1/n)*np.sum((ys-y_pre)**2)
    es.append(e)
#话出w不同取值下误差的均方
plt.title("cost function", fontsize=12)
plt.xlabel("w")
plt.ylabel("e")
plt.plot(ws, es)
plt.show()
#求抛物线最低点b/2a
w_min=np.sum(xs*ys)/np.sum(xs*xs)
print("e最小点的w"+str(w_min))
#画出e最小点的w值的预测曲线
plt.title("size-toxicity Fuction", fontsize=12)
plt.xlabel('bean size')
plt.ylabel("toxicity")
plt.scatter(xs, ys)
y_pre = w_min* xs
plt.plot(xs, y_pre)
plt.show()

dataset

import numpy as np

def get_beans(counts):
	xs = np.random.rand(counts)
	xs = np.sort(xs)
	ys = [1.2*x+np.random.rand()/10 for x in xs]
	return xs,ys

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值