差值有正负,所以相互之间会发生抵消作用,这就是用差值评估预测误差的问题
所以我们对一批豆豆预测的结果和标准答案之间的平方误差越小,说明偏离事实越小
对于环境中的问题数据预测时产生不同的误差,而利用这个“代价函数”的最低点的w值,这时候预测函数也就很好完成了对数据的拟合。
x和y都是通过观测统计而来的已知数,成为了代价函数的已知参数部分,而w成为了自变量,误差代价e是因变量。
代码
import numpy as np
import dataset
from matplotlib import pyplot as plt
n=100
# 画豆豆散点图
xs, ys = dataset.get_beans(n)
plt.title("size-toxicity Fuction", fontsize=12)
plt.xlabel('bean size')
plt.ylabel("toxicity")
plt.scatter(xs, ys)
w=0.1
y_pre = w * xs
plt.plot(xs, y_pre)
plt.show()
ws=np.arange(0,3,0.1)
es= []
for w in ws:
y_pre = w * xs
# 计算误差的均方
e=(1/n)*np.sum((ys-y_pre)**2)
es.append(e)
#话出w不同取值下误差的均方
plt.title("cost function", fontsize=12)
plt.xlabel("w")
plt.ylabel("e")
plt.plot(ws, es)
plt.show()
#求抛物线最低点b/2a
w_min=np.sum(xs*ys)/np.sum(xs*xs)
print("e最小点的w"+str(w_min))
#画出e最小点的w值的预测曲线
plt.title("size-toxicity Fuction", fontsize=12)
plt.xlabel('bean size')
plt.ylabel("toxicity")
plt.scatter(xs, ys)
y_pre = w_min* xs
plt.plot(xs, y_pre)
plt.show()
dataset
import numpy as np
def get_beans(counts):
xs = np.random.rand(counts)
xs = np.sort(xs)
ys = [1.2*x+np.random.rand()/10 for x in xs]
return xs,ys