17正交距阵和Gram-Schmidt正交化

标准正交向量与正交矩阵

上一节介绍过的正交向量,通过一个式子进行回顾,设q是标准正交向量组中的任意向量,则
在这里插入图片描述
这很好地表现了标准正交向量组内各向量的性质:
不同向量之间相互垂直(正交),向量长度都为
1(标准)。标准正交向量组又被称为标准正交基,显然,相互垂直的各列一定是线性无关的。

为什么执着于标准正交向量呢?在后续就可以看到标准正交向量能够极大的简化计算,许多数值线性代数都建立在标准正交向量的基础上,因为它们容易操控,它们从不上溢或下溢。

由此引出另一个概念,标准正交矩阵。所谓标准正交矩阵Q,就是将标准正交向量组中的向量q1,q2,q3…qn列到一个矩阵中去:
Q = [q1 q2 … qn]
这样的标准正交矩阵有一个很好的性质:
在这里插入图片描述
特别地,当 是方阵时,我们将这样的矩阵 称为正交矩阵。

为什么要单独将Q是方阵的情况拎出来呢?这是因为当标准正交矩阵Q 为方阵时,其必有逆矩
阵,很明显,由上面的
在这里插入图片描述
可知,Q 若为正交矩阵,其逆矩阵正是 Q,也即 在这里插入图片描述
可以举一些例子:
在这里插入图片描述

Gram-Schmidt正交化

格拉姆-施密特正交化的缺点在于,由于要求的单位向量,不可避免地要除以向量的长度,而这个过程很容易产生根号,所以最终产生的标准正交向量组经常会带有根号。
Gram-Schmidt 正交化的过程如下:
在这里插入图片描述
可以看到 Schmidt 也即单位化的过程是很简单的,正交化的关键在于找到 A,B。我们先从简单的情况开始,假设有两个线性无关的向量a,b:
在这里插入图片描述
怎样将其转换为两个相互正交的向量呢?容易联想到我们之前学习的投影,我们可以这样做:
在这里插入图片描述
直接将a向量定位A向量,而后,我们将b向量投影到a向量上得到p,注意到,此时误差向量e = b - p恰好就垂直于A向量,故令B = b - p有:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值