26对称矩阵及正定性

文章探讨了对称矩阵的特性,包括其特征值为实数且有正交的特征向量,这些性质使得对称矩阵可以被对角化。谱定理在此发挥了关键作用。此外,文章还简要介绍了正定矩阵的概念,它是对称矩阵的一个特例,所有特征值和主元必须为正。正定矩阵简化了对矩阵性质的理解和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、知识概要

本节从对称矩阵的特征值,特征向量入手,介绍对称矩阵在我们之前学习的一些内容上的特殊性质。并借此引出了正定矩阵。

二、对称矩阵

正如我们之前学习的很多特殊矩阵一样(如马尔科夫矩阵),对称矩阵也有许多特殊性质。而我们之前注意到,一个矩阵很多性质的特殊性体现在特征值与特征向量上,而对于对称矩阵,我们从特征值也特征向量的特殊性开始入手。直接给出性质,对称矩阵满足:
(1)A = 𝑨𝑻
(2)有正交的特征向量

注:其中(2)指的是可以“挑选出”一组垂直的特征向量,因为对于特征值重复的情况来说,这时会有一整个平面的特征向量,那么我们只要选其中垂直的一组向量就行,此时定理“有正交的特征向量”仍满足。而对于特征值不重复的情况,其对应的特征向量相互垂直。

2.1 对称矩阵的分解
已知上面两个性质,我们就能看出来对称矩阵的很多特点了,比如:由(2)这个性质,它的特征向量必然全部线性无关,而这正是矩阵可被对角化的前提条件。于是我们根据矩阵对角化的知识:
在这里插入图片描述
所以,给定一个对称矩阵,我们就可以将其分解成上面的这种形式。这在力学上被称为主轴定理,它意味着如果给定某种材料,在合适的轴上来看,它就会变成对角化的,方向就不会重复。而在数学上,这被称为“谱定理”。

2.2 对称矩阵的特征值
还记得之前介绍的旋转矩阵,其中有的对应值会造成特征值为虚数的情况,但是对于对称矩阵来说,这种情况是不会发生的,即:**对称矩阵特征值均为实数。**那么为什么对称矩阵的特征值是实数?

在这里插入图片描述
接下来,在知道了其特征值为实数之后,下面我们还需要探究其是正数还是负数
(1) 对称矩阵的主元正负个数与特征值的正负个数对应一致。
正主元个数 = 正特征值个数
负主元个数 = 负特征值个数
(2)对称矩阵的主元的乘积等于特征值的乘积(它们都等于矩阵行列式的值)
2.3 对称矩阵的另一种理解
在这里插入图片描述
于是就有对于谱定理的另一理解角度:每一个对称矩阵都是一些互相垂直的投影矩阵的线性组合。

三、正定矩阵简介

这一节中提前渗透一些正定矩阵的内容,了解即可,27,28 课会时对正定矩阵会进行详细叙述。
所谓正定矩阵就是一类对称矩阵,满足:
(1)所有的特征值是正数
(2)所有主元为正
(3)所有的子行列式都为正

在这里插入图片描述

四、学习感悟

本节从对称矩阵入手,介绍了对称矩阵的一些基本性质,进而引出了正定矩阵。我们可以看到,正定矩阵将矩阵的特征值,主元,行列式都联系到了一起,这样一来很多东西就被大大简化了,之后学习正定矩阵时,我们会更好的体会到这一点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值