利用svm算法实现癌症的诊断分类
一, 研究背景
癌症——由DNA变异引起的细胞恶性增生,是全球第二大死因,在2018年带走了估计约960万人的生命,占全球全年死亡人数的六分之一。基于组学数据的癌症预防和诊疗研究,对于提升人类的健康和福祉具有重要意义。
大数据挖掘是研究癌症的重要途径,有助于在分子水平上洞察癌变机制,为治疗、用药、预后监测提供帮助。
二,算法原理

设给定的数据集D为 (X1, y1), …, (X|D|, y|D|), 其中Xi是训练 元组,具有相关联的类标号yi,可以画出无限多条分离直线(或超平面)将两种不同类型 的元组分开,需要找出“最好的”那一条,对先前未见到的元组具有最小分类误差的那一条,SVM要搜索具有最大边缘的超平面,即最大边缘超平面
三,算法的实现
1加载数据源
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
读取数据
data = pd.read_csv("./data.csv")
2、数据探索
查看数据的基本情况:可以看到各字段数据没有缺失
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
id 569 non-null int64
diagnosis 569 non-null object

该文介绍了利用SVM算法进行癌症诊断分类的方法,通过数据预处理、特征选择和模型训练,最终在测试集上获得了超过90%的准确率。SVM寻找最大边缘超平面以实现最佳分类,对非线性问题有高准确性。
最低0.47元/天 解锁文章
819

被折叠的 条评论
为什么被折叠?



