1.步长、填充
步长
在卷积过程中,需要不断滑动卷积核来达到扫描二维图像的要求,并每次向列或行方向滑动并逐次计算值,而每次滑动的行数和列数就称之为步长。而步长的作用是为了成倍的缩小尺寸,来压缩一部分信息或者使输出的尺寸小于输入的尺寸。
填充
在卷积运算中,如果图像大小为n×n,过滤器为q×q。那么卷积运算的结果为(n-f+1)×(n-f+1)。经过运算后图像会缩小,而当经过了多次卷积后,原图像特征可能会缩小或丢失。填充顾名思义就是在图像周围填充一圈像素点,由原本的n×n图像得到(n+3)×(n+3)的图像,而卷积后得到n×n的图像。
2.感受野
感受野
感受野这一概念来自生物神经科学,指的是感觉系统中的任一神经元,其所收到的感受器神经元的支配范围。而在卷积神经网络中,感受野比较特殊,它不由整个网络输出所决定,它可以存在网络中的任意一层,但它的输出仅由输入部分决定。
3.局部感知、权值共享
局部感知
简单来说就是在卷积神经网络中,每个神经元只与上一层的部分神经元相连,只感知局部,而不是整幅图像。为什么这么做呢,一般是认为空间的联系与局部像素联系较为密切,而与距离较远的像素相关性就不那么强,所以,就无需每个神经元对全图进行感知,只需要每个神经元只对局部图像进行感知,再将特征信息上传至更高层综合起来得到全局信息。
权值共享
在局部连接中,每个神经元的参数都是一样的,换言之,同一个卷积核在图像中都是共享的,在卷积的过程中,所提取到的局部信息有一部分统计特征是与其他部分相同的,所以可以将原本学习到的特征运用在其他部分上。借此,对于图像,我们可以使用同样的学习特征。
4.池化(子采样、降采样、汇聚)
子采样
子采样通常在CNN中用于降维,减少网络学习的参数数量,防止过拟合,扩大感知野,或者实现平移不变性,旋转不变性,尺度不变性。
降采样
又名下采样或缩小图像,即采样点减少。这样是为了使得图像符合显示区域的大小,生成对应图像的缩略图。
汇聚
汇聚是对提取特征进行综合,目的是为了降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。
5.低级特征、中极特征、高级特征
视觉特征:点和边这样的低级特征,平面和斑点这样的中级特征,以及语义标记的对象这样的高级特征
低级特征
低级特征来源于浅层网络,富含空间信息,空间信息的特征分辨率比较高。
中级特征
中级特征则来源于浅层网络与深层网络之间,与低级特征相比,其空间属性更加丰富,但空间信息的特征分辨率较低。
高级特征
高级特征来源于深层网络,富含语义信息,语义信息的特征分辨率比较高。