一、研究背景
在全球旅游业蓬勃发展的背景下,酒店预订量的分析和预测显得尤为重要。酒店业者面临的一个主要挑战是预订的取消,这对酒店的收入和资源管理造成了显著影响。了解不同类型酒店的预订和取消情况,以及预订取消的关键影响因素,可以帮助酒店管理者优化运营策略,提高客户满意度和酒店盈利能力。
本研究基于一个包含城市酒店和度假酒店预订信息的数据集,通过数据分析和机器学习技术,探索影响酒店预订取消的因素,并预测未来的预订和取消趋势。数据集中的信息涵盖了酒店类型、预订时间、客户来源地等多个维度,为全面分析提供了坚实的基础。
二、研究意义
-
提高运营效率:通过识别预订取消的高风险因素,酒店可以提前采取措施,如优化房间配置、调整价格策略等,从而减少取消带来的损失,提高运营效率。
-
改善客户体验:了解客户预订行为和取消原因,有助于酒店针对不同客户群体制定个性化的服务策略,提升客户满意度和忠诚度。
-
支持决策制定:通过数据分析和预测,酒店管理者可以获得更多的决策支持信息,从而制定更科学的营销和管理策略,提升市场竞争力。
三、实证分析
该数据集包含一个文件,用于比较两家酒店之间的各种预订信息:城市酒店和度假酒店。
# 探索数据
df=pd.read_csv('hotel_bookings.csv')
df.head()
查看每列空值占比
描述性统计分析
df.describe()
接下来对每个特征进行箱线图可视化
接下来分析酒店预订量和取消量
plt.figure(figsize=