Python数据分析-酒店预定分析预测

一、研究背景

在全球旅游业蓬勃发展的背景下,酒店预订量的分析和预测显得尤为重要。酒店业者面临的一个主要挑战是预订的取消,这对酒店的收入和资源管理造成了显著影响。了解不同类型酒店的预订和取消情况,以及预订取消的关键影响因素,可以帮助酒店管理者优化运营策略,提高客户满意度和酒店盈利能力。

本研究基于一个包含城市酒店和度假酒店预订信息的数据集,通过数据分析和机器学习技术,探索影响酒店预订取消的因素,并预测未来的预订和取消趋势。数据集中的信息涵盖了酒店类型、预订时间、客户来源地等多个维度,为全面分析提供了坚实的基础。

二、研究意义

  • 提高运营效率:通过识别预订取消的高风险因素,酒店可以提前采取措施,如优化房间配置、调整价格策略等,从而减少取消带来的损失,提高运营效率。

  • 改善客户体验:了解客户预订行为和取消原因,有助于酒店针对不同客户群体制定个性化的服务策略,提升客户满意度和忠诚度。

  • 支持决策制定:通过数据分析和预测,酒店管理者可以获得更多的决策支持信息,从而制定更科学的营销和管理策略,提升市场竞争力。

三、实证分析

该数据集包含一个文件,用于比较两家酒店之间的各种预订信息:城市酒店和度假酒店。

数据和代码

# 探索数据
df=pd.read_csv('hotel_bookings.csv')
df.head()

查看每列空值占比

 

描述性统计分析

df.describe()

接下来对每个特征进行箱线图可视化

 

接下来分析酒店预订量和取消量 

plt.figure(figsize=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值