数学归纳法

前言

由于不完全归纳法涉及归纳的是有限项的结论,故不一定可靠,但省时省力;而完全归纳法涉及归纳的是无限项的结论,故结论可靠但操作性不强,这时候就需要横空出世一个用有限来驱动无限的方法,就是数学归纳法。

体会玩味

用多米诺骨牌来体会数学归纳法的真谛,建议用 × 0.75 \times 0.75 ×0.75倍速播放。

由多米诺骨牌的连带效应,引发得到了多米诺骨牌效应,与之紧密相连的一个中国成语是“轰然倒塌”。

数学归纳法

一般地,证明一个与正整数 n n n有关的命题,可按下列步骤进行:

(1)归纳奠基:证明当 n n n取第一个值 n 0 ( n 0 ∈ N ∗ ) n_0(n_0∈N^*) n0(n0N)时命题成立;

(2)归纳递推:假设当 n = k ( k ⩾ n 0 , k ∈ N ∗ ) n=k(k\geqslant n_0,k∈N^*) nk(kn0kN)时命题成立,推出当 n = k + 1 n=k+1 n=k+1时命题也成立。

只要完成这两个步骤,就可以断定命题对从 n 0 n_0 n0开始的所有正整数 n n n都成立.上述证明方法叫做数学归纳法。

注意事项

  • 凡是与自然数有关的命题,或探索性问题都可以使用数学归纳法来证明。
  • 两个步骤缺一不可,第一步是归纳奠基,第二步是归纳递推。
  • 第一步的初值不一定是 n 0 = 1 n_0=1 n0=1,还有可能是 n 0 = 2 n_0=2 n0=2 n 0 = 3 n_0=3 n0=3,比如涉及到多边形的问题时,其初值往往为 n 0 = 3 n_0=3 n0=3
  • 第二步在证明 n = k + 1 n=k+1 n=k+1时命题成立的时候,必须使用 n = k n=k n=k时的归纳假设,否则绕过归纳假设得出的结论就是不可靠的,是错误的。
  • 数学归纳法的难点其一,就是从 n = k n=k n=k n = k + 1 n=k+1 n=k+1时的项数的变化情况,大多情况下,增加项数为 1 1 1项,但不是所有题目都增加的项数为 1 1 1项,当 k k k在指数位置时,增加的项数往往不止一项。
  • 在证明 n = k + 1 ( k ∈ N ∗ , k ≥ n 0 ) n=k+1(k∈N^*,k≥n_0) n=k1(kNkn0)时命题成立的常用技巧:

①分析 n = k + 1 n=k+1 nk1时命题与 n = k n=k nk 时命题形式的差别,确定证明目标。

②证明恒等式时常用乘法公式、因式分解、添拆项配方、通分等等变形技巧,证明不等式时常用分析法、综合法、放缩法、做差法等。

③可能用到公式: ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a+b)3=a3+3a2b+3ab2+b3 a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

题型总结

  • A、能证明代数恒等式
  • B、证明不等式
  • C、证明整除问题
  • D、证明几何问题
  • E、用于求数列的通项公式【归纳 ⇒ \Rightarrow 猜想 ⇒ \Rightarrow 证明】

典例剖析

【证明代数恒等式】如已知 n ∈ N ∗ n\in N^{*} nN,证明 1 ⋅ n + 2 ⋅ ( n − 1 ) + 3 ⋅ ( n − 2 ) + ⋯ + ( n − 1 ) ⋅ 2 + n ⋅ 1 = 1 6 n ( n + 1 ) ( n + 2 ) 1\cdot n+2\cdot (n-1)+3\cdot (n-2)+\cdots+(n-1)\cdot 2+n\cdot 1= \cfrac{1}{6}n(n+1)(n+2) 1n+2(n1)+3(n2)++(n1)2+n1=61n(n+1)(n+2)

证明:用数学归纳法证明,

1 ∘ 1^{\circ} 1 n = 1 n=1 n=1时,左= 1 1 1,右= 1 × 2 × 3 6 = 1 \cfrac{1\times 2\times 3}{6}=1 61×2×3=1,等式成立。

2 ∘ 2^{\circ} 2 假设 n = k ( k ≥ 1 , k ∈ N ∗ ) n=k(k\ge1,k\in N^*) n=k(k1,kN)等式成立,

1 ⋅ k + 2 ⋅ ( k − 1 ) + 3 ⋅ ( k − 2 ) + ⋯ + ( k − 1 ) ⋅ 2 + k ⋅ 1 = 1 6 k ( k + 1 ) ( k + 2 ) 1\cdot k+2\cdot (k-1)+3\cdot (k-2)+\cdots+(k-1)\cdot 2+k\cdot 1= \cfrac{1}{6}k(k+1)(k+2) 1k+2(k1)+3(k2)++(k1)2+k1=61k(k+1)(k+2)

n = k + 1 n=k+1 n=k+1时,

1 ⋅ ( k + 1 ) + 2 ⋅ [ ( k + 1 ) − 1 ] + 3 ⋅ [ ( k + 1 ) − 2 ] + ⋯ + [ ( k + 1 ) − 1 ] ⋅ 2 + ( k + 1 ) ⋅ 1 1\cdot (k+1)+2\cdot [(k+1)-1]+3\cdot [(k+1)-2]+\cdots+[(k+1)-1]\cdot 2+(k+1)\cdot 1 1(k+1)+2[(k+1)1]+3[(k+1)2]++[(k+1)1]2+(k+1)1

= 1 ⋅ k + 2 ⋅ ( k − 1 ) + 3 ⋅ ( k − 2 ) + ⋯ + ( k − 1 ) ⋅ 2 + k ⋅ 1 + [ 1 + 2 + 3 + ⋯ + k + ( k + 1 ) ] =1\cdot k+2\cdot (k-1)+3\cdot (k-2)+\cdots+(k-1)\cdot 2+k\cdot 1+[1+2+3+\cdots+k+(k+1)] =1k+2(k1)+3(k2)++(k1)2+k1+[1+2+3++k+(k+1)]

= 1 6 k ( k + 1 ) ( k + 2 ) + ( 1 + k + 1 ) ( k + 1 ) 2 =\cfrac{1}{6}k(k+1)(k+2)+\cfrac{(1+k+1)(k+1)}{2} =61k(k+1)(k+2)+2(1+k+1)(k+1)

= 1 6 ( k + 1 ) ( k + 2 ) ( k + 3 ) =\cfrac{1}{6}(k+1)(k+2)(k+3) =61(k+1)(k+2)(k+3)

= 1 6 ( k + 1 ) [ ( k + 1 ) + 1 ] [ ( k + 1 ) + 2 ] =\cfrac{1}{6}(k+1)[(k+1)+1][(k+1)+2] =61(k+1)[(k+1)+1][(k+1)+2]

n = k + 1 n=k+1 n=k+1时,等式成立,

综上可知,对 ∀ n ∈ N ∗ \forall n\in N^* nN 1 ⋅ n + 2 ⋅ ( n − 1 ) + 3 ⋅ ( n − 2 ) + ⋯ + ( n − 1 ) ⋅ 2 + n ⋅ 1 = 1 6 n ( n + 1 ) ( n + 2 ) 1\cdot n+2\cdot (n-1)+3\cdot (n-2)+\cdots+(n-1)\cdot 2+n\cdot 1=\cfrac{1}{6}n(n+1)(n+2) 1n+2(n1)+3(n2)++(n1)2+n1=61n(n+1)(n+2)都成立。

【宝鸡中学2017年高三理科第一次月考第19题】【归纳 ⇒ \Rightarrow 猜想 ⇒ \Rightarrow 证明】是否存在常数 a a a b b b,使得 2 2 2 + 4 +4 +4 + 6 +6 +6 + + + ⋯ \cdots + 2 n +2n +2n = a n 2 =an^2 =an2 + b n +bn +bn对一切 n ∈ N ∗ n\in N^* nN恒成立?若存在,求出 a , b a,b a,b的值,并用数学归纳法证明;若不存在,说明理由。

分析:由等差数列的前 n n n项和公式可知, 2 + 4 + 6 + ⋯ + 2 n = ( 2 + 2 n ) n 2 = n 2 + n 2+4+6+\cdots+2n=\cfrac{(2+2n)n}{2}=n^2+n 2+4+6++2n=2(2+2n)n=n2+n

故猜想存在实数 a = b = 1 a=b=1 a=b=1,使得 2 + 4 + 6 + ⋯ + 2 n = n 2 + n 2+4+6+\cdots+2n=n^2+n 2+4+6++2n=n2+n对一切 n ∈ N ∗ n\in N^* nN恒成立。

解析:存在实数 a = b = 1 a=b=1 a=b=1,使得 2 + 4 + 6 + ⋯ + 2 n = n 2 + n 2+4+6+\cdots+2n=n^2+n 2+4+6++2n=n2+n对一切 n ∈ N ∗ n\in N^* nN恒成立。

以下用数学归纳法证明。

1 。 1^。 1 n = 1 n=1 n=1时,左式 = 2 =2 =2,右式 = 1 2 + 1 = 2 =1^2+1=2 =12+1=2,故等式成立;

2 。 2^。 2假设当 n = k ( k ⩾ 1 ) n=k(k\geqslant 1) n=k(k1)时等式成立,即 2 + 4 + 6 + ⋯ + 2 k = k 2 + k 2+4+6+\cdots+2k=k^2+k 2+4+6++2k=k2+k

n = k + 1 n=k+1 n=k+1时,

2 + 4 + 6 + ⋯ + 2 k + 2 ( k + 1 ) 2+4+6+\cdots+2k+2(k+1) 2+4+6++2k+2(k+1)

= k 2 + k + 2 ( k + 1 ) =k^2+k+2(k+1) =k2+k+2(k+1)

= k 2 + 2 k + 1 + k + 1 =k^2+2k+1+k+1 =k2+2k+1+k+1

= ( k + 1 ) 2 + ( k + 1 ) =(k+1)^2+(k+1) =(k+1)2+(k+1)

n = k + 1 n=k+1 n=k+1时等式成立,

综上所述,对一切 n ∈ N ∗ n\in N^* nN都有 2 + 4 + 6 + ⋯ + 2 n = n 2 + n 2+4+6+\cdots+2n=n^2+n 2+4+6++2n=n2+n

即存在实数 a = 1 , b = 1 a=1,b=1 a=1,b=1,使得 2 + 4 + 6 + ⋯ + 2 n = a n 2 + b n 2+4+6+\cdots+2n=an^2+bn 2+4+6++2n=an2+bn都成立。

【数学归纳法求数列的通项公式】【归纳 ⇒ \Rightarrow 猜想 ⇒ \Rightarrow 证明】 已知数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn S n = 2 n − a n S_n=2n-a_n Sn=2nan

(1)求 a 1 , a 2 , a 3 , a 4 a_1,a_2,a_3,a_4 a1a2a3a4的值,并猜想数列的通项公式

(2)用数学归纳法证明你的猜想。

(1).分析:求解得到 a 1 = 1 a_1=1 a1=1 a 2 = 3 2 a_2=\cfrac{3}{2} a2=23 a 3 = 7 4 a_3=\cfrac{7}{4} a3=47 a 4 = 15 8 a_4=\cfrac{15}{8} a4=815

猜想得到数列的通项公式为 a n = 2 n − 1 2 n − 1 , n ∈ N ∗ a_n=\cfrac{2^n-1}{2^{n-1}},n\in N^* an=2n12n1nN

(2).用数学归纳法证明

1 。 1^。 1 n = 1 n=1 n=1时, a 1 = 2 1 − 1 2 1 − 1 = 1 a_1=\cfrac{2^1-1}{2^{1-1}}=1 a1=211211=1满足;

2 。 2^。 2 n = k ( k ≥ 1 ) n=k(k\ge 1) n=k(k1)时命题成立,即 a k = 2 k − 1 2 k − 1 a_k=\cfrac{2^k-1}{2^{k-1}} ak=2k12k1

则当 n = k + 1 n=k+1 n=k+1时,由 S k + 1 = 2 ( k + 1 ) − a k + 1 S_{k+1}=2(k+1)-a_{k+1} Sk+1=2(k+1)ak+1

则有 a 1 + a 2 + ⋯ + a k + a k + 1 = 2 ( k + 1 ) − a k + 1 a_1+a_2+\cdots+a_k+a_{k+1}=2(k+1)-a_{k+1} a1+a2++ak+ak+1=2(k+1)ak+1

a 1 + a 2 + ⋯ + a k + 2 a k + 1 = 2 ( k + 1 ) a_1+a_2+\cdots+a_k+2a_{k+1}=2(k+1) a1+a2++ak+2ak+1=2(k+1)

2 a k + 1 = 2 ( k + 1 ) − S k = 2 ( k + 1 ) − 2 k + a k = a k + 2 2a_{k+1}=2(k+1)-S_k=2(k+1)-2k+a_k=a_k+2 2ak+1=2(k+1)Sk=2(k+1)2k+ak=ak+2

a k + 1 = a k 2 + 1 = 1 2 ⋅ 2 k − 1 2 k − 1 + 1 = 2 k + 1 − 1 2 k a_{k+1}=\cfrac{a_k}{2}+1=\cfrac{1}{2}\cdot \cfrac{2^k-1}{2^{k-1}}+1=\cfrac{2^{k+1}-1}{2^k} ak+1=2ak+1=212k12k1+1=2k2k+11

n = k + 1 n=k+1 n=k+1时,命题成立。

综上所述,当 n ∈ N ∗ n\in N^* nN时,命题成立。即 a n = 2 n − 1 2 n − 1 , n ∈ N ∗ a_n=\cfrac{2^n-1}{2^{n-1}},n\in N^* an=2n12n1nN.

法2:用 a n a_n an S n S_n Sn的关系求通项公式:

由已知 S n = 2 n − a n S_n=2n-a_n Sn=2nan,得到当 n ≥ 2 n\ge 2 n2时, S n − 1 = 2 ( n − 1 ) − a n − 1 S_{n-1}=2(n-1)-a_{n-1} Sn1=2(n1)an1,两式相减得到

故有当 n ≥ 2 n\ge 2 n2时, a n = 2 − a n + a n − 1 a_n=2-a_n+a_{n-1} an=2an+an1

则有 2 a n = a n − 1 + 2 ( n ≥ 2 ) 2a_n=a_{n-1}+2(n\ge2) 2an=an1+2(n2);即 a n = 1 2 a n − 1 + 1 ( n ≥ 2 ) a_n=\cfrac{1}{2}a_{n-1}+1(n\ge2) an=21an1+1(n2)

a n − 2 = 1 2 ( a n − 1 − 2 ) ( n ≥ 2 ) a_n-2=\cfrac{1}{2}(a_{n-1}-2)(n\ge2) an2=21(an12)(n2),又 a 1 − 2 = − 1 ≠ 0 a_1-2=-1 \neq 0 a12=1=0

故数列 { a n − 2 } \{a_n-2\} {an2}是首项为 − 1 -1 1,公比为 1 2 \cfrac{1}{2} 21的等比数列,

a n − 2 = ( − 1 ) ⋅ ( 1 2 ) n − 1 a_n-2=(-1)\cdot (\cfrac{1}{2})^{n-1} an2=(1)(21)n1

a n = − 1 2 n − 1 + 2 = 2 n − 1 2 n − 1 ( n ∈ N ∗ ) a_n=-\cfrac{1}{2^{n-1}}+2=\cfrac{2^n-1}{2^{n-1}}(n\in N^*) an=2n11+2=2n12n1(nN)

【数学归纳法的难点:增加的项数】用数学归纳法证明:“ 1 + 1 2 + 1 3 + ⋯ + 1 2 n − 1 < n 1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^n-1}<n 1+21+31++2n11<n ( n ∈ N ∗ , n > 1 ) (n\in N^*,n>1) (nNn>1)”,由 n = k ( k > 1 ) n=k(k>1) n=k(k>1)不等式成立,推证 n = k + 1 n=k+1 n=k+1时,左边应增加的项数是____________。

分析:左边的和式的特点,分母逐项增加 1 1 1,末项为 1 2 n − 1 \cfrac{1}{2^n-1} 2n11

n = k n=k n=k时,左端的和式为 1 + 1 2 + 1 3 + ⋯ + 1 2 k − 1 1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^k-1} 1+21+31++2k11

n = k + 1 n=k+1 n=k+1时,左端的和式为 1 + 1 2 + 1 3 + ⋯ + 1 2 k − 1 + 1 2 k + 1 2 k + 1 + ⋯ + 1 2 k + 1 − 1 1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^k-1}+\cfrac{1}{2^k}+\cfrac{1}{2^k+1}+\cdots+\cfrac{1}{2^{k+1}-1} 1+21+31++2k11+2k1+2k+11++2k+111

增加的项数可以借助等差数列求项数的公式求解 n = a n − a 1 d + 1 n=\cfrac{a_n-a_1}{d}+1 n=dana1+1

故增加的项数为 2 k + 1 − 1 − 2 k 1 + 1 = 2 k + 1 − 2 k = 2 k \cfrac{2^{k+1}-1-2^k}{1}+1=2^{k+1}-2^k=2^k 12k+112k+1=2k+12k=2k

即增加的项数为 2 k 2^k 2k项。

【数学归纳法的难点:增加的项数】用数学归纳法证明 1 n + 1 + 1 n + 2 + 1 n + 3 + ⋯ + 1 2 n ≥ 11 34 \cfrac{1}{n+1}+\cfrac{1}{n+2}+\cfrac{1}{n+3}+\cdots+\cfrac{1}{2n}≥\cfrac{11}{34} n+11n+21n+312n13411时,由 n = k n=k n=k n = k + 1 n=k+1 n=k1,不等式左边的变化是【】

A . A. A.增加 1 2 ( k + 1 ) \cfrac{1}{2(k+1)} 2(k+1)1

B . B. B.增加 1 2 k + 1 \cfrac{1}{2k+1} 2k+11 1 2 k + 2 \cfrac{1}{2k+2} 2k+21两项

C . C. C.增加 1 2 k + 1 \cfrac{1}{2k+1} 2k+11 1 2 k + 2 \cfrac{1}{2k+2} 2k+21两项同时减少 1 k + 1 \cfrac{1}{k+1} k+11

D . D. D.以上都不对

解析:当 n = k n=k n=k时,左边= 1 k + 1 + 1 k + 2 + 1 k + 3 + ⋯ + 1 2 k \cfrac{1}{k+1}+\cfrac{1}{k+2}+\cfrac{1}{k+3}+\cdots+\cfrac{1}{2k} k+11k+21k+312k1

n = k + 1 n=k+1 nk1时,左边= 1 k + 2 + 1 k + 3 + 1 k + 4 + ⋯ + 1 2 ( k + 1 ) \cfrac{1}{k+2}+\cfrac{1}{k+3}+\cfrac{1}{k+4}+\cdots+\cfrac{1}{2(k+1)} k+21k+31k+412(k+1)1

故由“ n = k n=k nk”变成“ n = k + 1 n=k+1 nk1”时,不等式左边的变化是 1 2 k + 1 + 1 2 k + 2 − 1 k + 1 \cfrac{1}{2k+1}+\cfrac{1}{2k+2}-\cfrac{1}{k+1} 2k+11+2k+21k+11,故选 C C C

【证明不等式】已知 f ( n ) = 1 + 1 2 3 + 1 3 3 + 1 4 3 + ⋯ + + 1 n 3 f(n)=1+\cfrac{1}{2^3}+\cfrac{1}{3^3}+\cfrac{1}{4^3}+\cdots++\cfrac{1}{n^3} f(n)=1+231+331+431+++n31 g ( n ) = 3 2 − 1 2 n 2 g(n)=\cfrac{3}{2}-\cfrac{1}{2n^2} g(n)=232n21 n ∈ N ∗ n\in N^* nN

(1)当 n = 1 , 2 , 3 n=1,2,3 n=123时,试比较 f ( n ) f(n) f(n) g ( n ) g(n) g(n)的大小关系。

分析:当 n = 1 n=1 n=1时, f ( 1 ) = 1 f(1)=1 f(1)=1 g ( 1 ) = 1 g(1)=1 g(1)=1,所以 f ( 1 ) = g ( 1 ) f(1)=g(1) f(1)=g(1)

n = 2 n=2 n=2时, f ( 2 ) = 9 8 f(2)=\cfrac{9}{8} f(2)=89 g ( 2 ) = 11 8 g(2)=\cfrac{11}{8} g(2)=811,所以 f ( 2 ) < g ( 2 ) f(2)<g(2) f(2)<g(2)

n = 3 n=3 n=3时, f ( 3 ) = 251 216 f(3)=\cfrac{251}{216} f(3)=216251 g ( 3 ) = 312 216 g(3)=\cfrac{312}{216} g(3)=216312,所以 f ( 3 ) < g ( 3 ) f(3)<g(3) f(3)<g(3)

(2)猜想 f ( n ) f(n) f(n) g ( n ) g(n) g(n)的大小关系,并给出证明。

猜想: f ( n ) ≤ g ( n ) f(n)\leq g(n) f(n)g(n),以下用数学归纳法给出证明。

①当 n = 1 , 2 , 3 n=1,2,3 n=123时,不等式显然成立;

②假设当 n = k ( k ≥ 3 , k ∈ N ∗ ) n=k(k\ge 3,k\in N^*) n=k(k3kN)时不等式 f ( k ) < g ( k ) f(k)<g(k) f(k)<g(k)成立,即

1 + 1 2 3 + 1 3 3 + 1 4 3 + ⋯ + + 1 k 3 < 3 2 − 1 2 k 2 1+\cfrac{1}{2^3}+\cfrac{1}{3^3}+\cfrac{1}{4^3}+\cdots++\cfrac{1}{k^3}<\cfrac{3}{2}-\cfrac{1}{2k^2} 1+231+331+431+++k31<232k21

那么,当 n = k + 1 n=k+1 n=k+1时, f ( k + 1 ) = f ( k ) + 1 ( k + 1 ) 3 < 3 2 − 1 2 k 2 + 1 ( k + 1 ) 3 f(k+1)=f(k)+\cfrac{1}{(k+1)^3}<\cfrac{3}{2}-\cfrac{1}{2k^2}+\cfrac{1}{(k+1)^3} f(k+1)=f(k)+(k+1)31<232k21+(k+1)31

[ 3 2 − 1 2 k 2 + 1 ( k + 1 ) 3 ] − [ 3 2 − 1 2 ( k + 1 ) 2 ] [\cfrac{3}{2}-\cfrac{1}{2k^2}+\cfrac{1}{(k+1)^3}]-[\cfrac{3}{2}-\cfrac{1}{2(k+1)^2}] [232k21+(k+1)31][232(k+1)21]

= − 1 2 k 2 + 2 2 ( k + 1 ) 3 + k + 1 2 ( k + 1 ) 3 =-\cfrac{1}{2k^2}+\cfrac{2}{2(k+1)^3}+\cfrac{k+1}{2(k+1)^3} =2k21+2(k+1)32+2(k+1)3k+1

= k + 3 2 ( k + 1 ) 3 − 1 2 k 2 =\cfrac{k+3}{2(k+1)^3}-\cfrac{1}{2k^2} =2(k+1)3k+32k21

= ( k + 3 ) k 2 − ( k + 1 ) 3 2 k 2 ( k + 1 ) 3 =\cfrac{(k+3)k^2-(k+1)^3}{2k^2(k+1)^3} =2k2(k+1)3(k+3)k2(k+1)3

= − 3 k − 1 2 k 2 ( k + 1 ) 3 < 0 =\cfrac{-3k-1}{2k^2(k+1)^3}<0 =2k2(k+1)33k1<0

f ( k + 1 ) < 3 2 − 1 2 k 2 + 1 ( k + 1 ) 3 < 3 2 − 1 2 ( k + 1 ) 2 = g ( k + 1 ) f(k+1)<\cfrac{3}{2}-\cfrac{1}{2k^2}+\cfrac{1}{(k+1)^3}<\cfrac{3}{2}-\cfrac{1}{2(k+1)^2}=g(k+1) f(k+1)<232k21+(k+1)31<232(k+1)21=g(k+1)

n = k + 1 n=k+1 n=k+1时,不等式成立,

综上所述, f ( n ) ≤ g ( n ) f(n)\leq g(n) f(n)g(n)对任意 n ∈ N ∗ n\in N^* nN都成立。

【证明整除问题】试用数学归纳法证明 ( 2 n + 1 ) 2 − 1 (2n+1)^2-1 (2n+1)21能被 8 8 8整除,其中 n ∈ N ∗ n\in N^* nN

证明:用数学归纳法。

①当 n = 1 n=1 n=1时, ( 2 n + 1 ) 2 − 1 = 3 2 − 1 = 8 (2n+1)^2-1=3^2-1=8 (2n+1)21=321=8能被 8 8 8整除,命题成立;

②假设当 n = k ( k ≥ 1 , k ∈ N ∗ ) n=k(k\ge 1,k\in N^*) n=k(k1kN)时命题成立,即 ( 2 k + 1 ) 2 − 1 (2k+1)^2-1 (2k+1)21能被 8 8 8整除,

那么当 n = k + 1 n=k+1 n=k+1时,需要证明 [ 2 ( k + 1 ) + 1 ] 2 − 1 [2(k+1)+1]^2-1 [2(k+1)+1]21能被 8 8 8整除,

[ 2 ( k + 1 ) + 1 ] 2 − 1 = ( 2 k + 3 ) 2 − 1 = [ ( 2 k + 1 ) + 2 ] 2 − 1 [2(k+1)+1]^2-1=(2k+3)^2-1=[(2k+1)+2]^2-1 [2(k+1)+1]21=(2k+3)21=[(2k+1)+2]21

= ( 2 k + 1 ) 2 + 2 × 2 × ( 2 k + 1 ) + 4 − 1 =(2k+1)^2+2\times 2\times (2k+1)+4-1 =(2k+1)2+2×2×(2k+1)+41

= ( 2 k + 1 ) 2 − 1 + 8 ( k + 1 ) =(2k+1)^2-1+8(k+1) =(2k+1)21+8(k+1),显然能被 8 8 8整除,

n = k + 1 n=k+1 n=k+1时命题成立,

综上所述, ( 2 n + 1 ) 2 − 1 (2n+1)^2-1 (2n+1)21能被 8 8 8整除,其中 n ∈ N ∗ n\in N^* nN

【证明几何问题】在平面内有 n ( n ∈ N ∗ ) n(n\in N*) n(nN)条直线,其中任何两条不平行,任何三条不过同一点,证明:这 n n n条直线把平面分成 f ( n ) = n 2 + n + 2 2 f(n)=\cfrac{n^2+n+2}{2} f(n)=2n2+n+2个平面区域,

法1:累加法,

f ( 1 ) f(1) f(1) f ( 2 ) f(2) f(2) f ( 3 ) f(3) f(3) f ( 4 ) f(4) f(4) f ( 5 ) f(5) f(5)的值;并总结 f ( n ) f(n) f(n)的表达式。

解析:由题意知,则 f ( 1 ) = 2 f(1)=2 f(1)=2 f ( 2 ) = 4 f(2)=4 f(2)=4 f ( 3 ) = 7 f(3)=7 f(3)=7 f ( 4 ) = 11 f(4)=11 f(4)=11 f ( 5 ) = 16 f(5)=16 f(5)=16

f ( 2 ) − f ( 1 ) = 4 − 2 = 2 f(2)-f(1)=4-2=2 f(2)f(1)=42=2

f ( 3 ) − f ( 2 ) = 7 − 4 = 3 f(3)-f(2)=7-4=3 f(3)f(2)=74=3

f ( 4 ) − f ( 3 ) = 11 − 7 = 4 f(4)-f(3)=11-7=4 f(4)f(3)=117=4

f ( 5 ) − f ( 4 ) = 16 − 11 = 5 f(5)-f(4)=16-11=5 f(5)f(4)=1611=5

$\cdots $,

f ( n ) − f ( n − 1 ) = n f(n)-f(n-1)=n f(n)f(n1)=n

因此,当 n ≥ 2 n\ge 2 n2时,由累加法可知,

f ( n ) − f ( 1 ) = 2 + 3 + ⋯ + n = ( n + 2 ) ( n − 1 ) 2 f(n)-f(1)=2+3+\cdots+n=\cfrac{(n+2)(n-1)}{2} f(n)f(1)=2+3++n=2(n+2)(n1)

f ( n ) = n 2 + n + 2 2 f(n)=\cfrac{n^2+n+2}{2} f(n)=2n2+n+2

n = 1 n=1 n=1时, f ( 1 ) = 2 f(1)=2 f(1)=2,也满足上式,故

f ( n ) = n 2 + n + 2 2 f(n)=\cfrac{n^2+n+2}{2} f(n)=2n2+n+2

法2:用数学归纳法证明,

①当 n = 1 n=1 n=1时,由几何常识可知,一条直线将平面分成两个部分即 f ( 1 ) = 2 f(1)=2 f(1)=2,又 f ( 1 ) = 1 2 + 1 + 2 2 = 1 f(1)=\cfrac{1^2+1+2}{2}=1 f(1)=212+1+2=1,即 n = 1 n=1 n=1时命题成立。

②假设当当 n = k ( k ≥ 1 , k ∈ N ∗ ) n=k(k\ge 1,k\in N^*) n=k(k1kN)时命题成立,即 k k k条直线将平面分成的部分数为 f ( k ) = k 2 + k + 2 2 f(k)=\cfrac{k^2+k+2}{2} f(k)=2k2+k+2

那么当 n = k + 1 n=k+1 n=k+1时,由于新添加的第 k + 1 k+1 k+1条直线和以前的 k k k条直线两两相交且不共点,此时新增加平面区域个数为 k + 1 k+1 k+1个,

f ( k + 1 ) = f ( k ) + k + 1 = k 2 + k + 2 2 + k + 1 f(k+1)=f(k)+k+1=\cfrac{k^2+k+2}{2}+k+1 f(k+1)=f(k)+k+1=2k2+k+2+k+1

= k 2 + k + 2 + 2 ( k + 1 ) 2 = ( k 2 + 2 k + 1 ) + ( k + 1 ) + 2 2 =\cfrac{k^2+k+2+2(k+1)}{2}=\cfrac{(k^2+2k+1)+(k+1)+2}{2} =2k2+k+2+2(k+1)=2(k2+2k+1)+(k+1)+2

= ( k + 1 ) 2 + ( k + 1 ) + 2 2 =\cfrac{(k+1)^2+(k+1)+2}{2} =2(k+1)2+(k+1)+2

即当 n = k + 1 n=k+1 n=k+1时,命题也成立。

综上所述, n ∈ N ∗ n\in N^* nN时, f ( n ) = n 2 + n + 2 2 f(n)=\cfrac{n^2+n+2}{2} f(n)=2n2+n+2

n n n条直线把平面分成 f ( n ) = n 2 + n + 2 2 f(n)=\cfrac{n^2+n+2}{2} f(n)=2n2+n+2个平面区域。

  • 难点突破:本题目中的难点就是新添加了第 k + 1 k+1 k+1条直线后,平面区域也新增加了 k + 1 k+1 k+1个,

思路1:用不完全归纳法突破,比如直线条数由 1 ⇒ 2 1\Rightarrow 2 12时,增加的区域个数为 2 2 2个,由 2 ⇒ 3 2\Rightarrow 3 23时,增加的区域个数为 3 3 3个,由 3 ⇒ 4 3\Rightarrow 4 34时,增加的区域个数为 4 4 4个, ⋯ \cdots ,则由 n ⇒ n + 1 n\Rightarrow n+1 nn+1时,增加的区域个数为 n + 1 n+1 n+1个。

思路2:借助图形突破。

求证: 2 < ( 1 + 1 n ) n < 3 2<(1+\cfrac{1}{n})^n<3 2<(1+n1)n<3,其中 n ∈ N ∗ n\in N^* nN n ≥ 2 n\ge 2 n2

法1:由二项展开式可知

( 1 + 1 n ) n = 1 + C n 1 ⋅ 1 n + C n 2 ⋅ 1 n 2 + ⋯ + C n n ⋅ 1 n n (1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n} (1+n1)n=1+Cn1n1+Cn2n21++Cnnnn1

由于各项均为正数,且 n ∈ N ∗ n\in N^* nN,删减项放缩法得到,

( 1 + 1 n ) n > 1 + C n 1 ⋅ 1 n = 2 (1+\cfrac{1}{n})^n>1+C_n^1\cdot \cfrac{1}{n}=2 (1+n1)n>1+Cn1n1=2

又由于 ( 1 + 1 n ) n = 1 + C n 1 ⋅ 1 n + C n 2 ⋅ 1 n 2 + ⋯ + C n n ⋅ 1 n n (1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n} (1+n1)n=1+Cn1n1+Cn2n21++Cnnnn1

= 1 + 1 + 1 2 ! ⋅ n − 1 n + 1 3 ! ⋅ ( n − 1 ) ( n − 2 ) n 2 + ⋯ + 1 n ! ⋅ ( n − 1 ) × ( n − 2 ) × ⋯ × 2 × 1 n n − 1 =1+1+\cfrac{1}{2!}\cdot \cfrac{n-1}{n}+\cfrac{1}{3!}\cdot \cfrac{(n-1)(n-2)}{n^2}+\cdots+\cfrac{1}{n!}\cdot \cfrac{(n-1)\times (n-2)\times \cdots\times 2\times 1}{n^{n-1}} =1+1+2!1nn1+3!1n2(n1)(n2)++n!1nn1(n1)×(n2)××2×1

< 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! <1+1+\cfrac{1}{2!}+\cfrac{1}{3!}+\cdots +\cfrac{1}{n!} <1+1+2!1+3!1++n!1

< 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 <1+1+\cfrac{1}{2}+\cfrac{1}{2^2}+\cdots +\cfrac{1}{2^{n-1}} <1+1+21+221++2n11

= 1 + 1 − 1 2 n 1 − 1 2 =1+\cfrac{1-\cfrac{1}{2^n}}{1-\cfrac{1}{2}} =1+12112n1

= 3 − 1 2 n − 1 < 3 =3-\cfrac{1}{2^{n-1}}<3 =32n11<3

2 < ( 1 + 1 n ) n < 3 2<(1+\cfrac{1}{n})^n<3 2<(1+n1)n<3,证毕。

法2:也可以考虑使用数学归纳法证明。

某个命题与自然数 n n n有关,若 n = k ( k ∈ N ∗ ) n=k(k\in N^*) n=k(kN)时命题成立,那么可以推得当 n = k + 1 n=k+1 n=k+1时命题也成立。现已知当 n = 5 n=5 n=5时,该命题不成立,那么可以推得【】

A . A. A. n = 6 n=6 n=6时,该命题不成立<

B . B. B. n = 6 n=6 n=6时,该命题成立

C . C. C. n = 4 n=4 n=4时,该命题不成立

D . D. D. n = 5 n=5 n=5时,该命题成立

分析:选 C C C,本题目考查数学归纳法和命题的等价性。

如果认定原命题为真,则其逆否命题是:“若 n = k + 1 ( k ∈ N ∗ ) n=k+1(k\in N^*) n=k+1(kN)时命题不成立,则      n = k      \;\;n=k\;\; n=k时命题也不成立。”也为真,

这样由于题目已知当 n = 5 n=5 n=5时,该命题不成立,则可以推出当 n = 4 n=4 n=4时,该命题不成立,而且当 n = 3 , 2 , 1 n=3,2,1 n=321时,该命题也不成立。

故选 C C C

相关链接

1、数列与数学归纳法

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值