【信号与系统第一章】1、信号

信号介绍

1、连续信号用x(t)表示,离散信号用x(n)表示

2、 连续周期信号:x(t)=x(t+mT)(m\epsilon Z)

      离散周期信号:x[n]=x[n+mN](m\epsilon Z),N是自然数

3、每个信号都能分解成一个偶信号加一个奇信号:x(t)=\frac{x(t)+x(-t)}{2}+\frac{x(t)-x(-t)}{2},且奇信号和偶函数是唯一的。

4、能量信号和功率信号

信号在t0-t1的能量        E=\int_{t_{0}}^{t_{1}}\left | x(t) \right |^{2}dt

信号在t0-t1的平均功率 P=\frac{1}{t_{1}-t_{0}}\int_{t_{0}}^{t_{1}}\left | x(t) \right |^{2}dt

能量有限的信号称为能量有限信号,简称能量信号(平均功率为0)

功率有限的信号称为功率信号(能量无穷大)

典型信号

1、阶跃信号

u(t)=\begin{cases} 1 & \text{ if } t>0 \\ 0& \text{ if } t<0 \end{cases}u(0)=\forall(任意值)

2、冲激信号

\delta (t)=\frac{du(t)}{dt}

(1)冲激函数的性质:

(2)冲击函数的多样性

1>第一种:

2>第二种:

3>第三种:

4>第四种:

3、抽样函数

Sa(t)=\frac{sin(t)}{t}

抽样函数的性质:\int_{0}^{\infty }Sa(t)dt=\frac{\pi }{2}

                            \int_{-\infty }^{\infty }Sa(t)dt=\pi

                           \int_{-\infty }^{\infty }\frac{sin(\omega t)}{t}dt=\pi

4、单位冲击序列

\delta [n]\begin{cases} 0 & \text{ if } n\neq 0 \\ 1& \text{ if } n=0 \end{cases}

5、单位阶跃序列

u[n]=\begin{cases} 0 & \text{ if } n<0 \\ 1 & \text{ if } n\geqslant 0 \end{cases}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值