
深度学习
文章平均质量分 85
AI的Learner
如果你不能用可视化的方式看到事情的过程和结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。
展开
-
【深度学习】两种数据集格式(Dataset和ImageFolder)
它的设计使得用户可以处理各种类型的数据,包括文本、图像、音频等。类型数据集适用于多种数据格式,可以存储更复杂的数据结构,灵活性更高,但通常需要手动处理数据格式。是一个专门用于加载图像数据集的类,适用于数据集目录按类别组织的情况,能够自动处理图像和标签。,因为它本身已经实现了对图像数据的处理,并且返回一个由图像和标签组成的元组。它假设数据集目录结构是按类别组织的,每个类别的图像位于各自的子目录中。库加载的,它通常是一个字典,包含多个字段,你需要在。),每个值是该字段的数据(例如图像和标签)。原创 2025-05-01 00:38:58 · 380 阅读 · 0 评论 -
【深度学习—李宏毅教程笔记】各式各样的 Attention
本文详细分析了Self-Attention的各种优化改进原创 2025-04-20 19:43:19 · 1163 阅读 · 0 评论 -
【深度学习—李宏毅教程笔记】Transformer
本文超详解Transformer原创 2025-04-19 16:40:32 · 767 阅读 · 0 评论 -
【深度学习—李宏毅教程笔记】Self-attention
本文详细解读了Self‑Attention的架构,矩阵运算实现过程等。原创 2025-04-18 17:00:14 · 1119 阅读 · 0 评论 -
【深度学习—李宏毅教程笔记】Spatial Transformer Layer
Spatial Transformer Layer 是对cnn的改进,它使卷积操作不仅具有局部平移不变性,而且对旋转、缩放、非线性形变等其他空间变换也具有更强的鲁棒性原创 2025-04-17 08:00:00 · 424 阅读 · 0 评论 -
【李宏毅深度学习——分类模型的PyTorch架构】Homework 2:Phoneme Classification
本文分析并提供了一个标准的基于 PyTorch 的分类模型框架,以后遇到相关项目可套模板。原创 2025-04-16 17:55:10 · 705 阅读 · 0 评论 -
【深度学习—李宏毅教程笔记】机器学习任务攻略
从上面的分析可知,在明显训练时,大的 batch 就一定好吗?从上面的分析不难看出,对于普通的梯度下降优化器,可能会陷入鞍点,但如果利用了二阶信息来梯度下降,就不会陷入鞍点,即在鞍点的时候,当朝着黑塞矩阵负的特征值对应的特征向量的方向更新参数时,损失就会减小,所以可以断定牛顿法(利用二阶信息的梯度下降)可以避免陷入鞍点,但牛顿法计算黑塞矩阵特征值特性向量复杂度太大,一般改进牛顿法,使得在找到近似的负的特征值对应的特征向量的方向的情况下,计算复杂度大大小于计算黑塞矩阵的复杂度。那两种的总和时间怎么样呢?原创 2025-04-15 12:32:14 · 1117 阅读 · 0 评论 -
【李宏毅深度学习——回归模型的PyTorch架构】Homework 1:COVID-19 Cases Prediction (Regression)
''''''self.y = yelse:else:这段代码定义了一个自定义的 PyTorch 数据集类,继承自。这个类的目的是将输入的特征(x)和目标(y)封装成一个可以用于 PyTorch 数据加载器的对象,方便在训练和预测时进行批量处理。nn.ReLU(),nn.ReLU(),return x这段代码定义了一个简单的神经网络模型My_Model,继承自。该模型用于执行回归任务(因为最后一层输出的是一个标量),并通过来定义一个包含多层的网络结构。原创 2025-04-13 08:00:00 · 682 阅读 · 0 评论 -
【土堆 PyTorch 教程总结】PyTorch入门
土堆pytorch教程总结原创 2025-04-12 01:11:07 · 1039 阅读 · 2 评论 -
Anaconda环境管理及 pycharm、jupyter notebook 的配置
即python控制台,它可以在右侧实时显示变量的类型,数值大小等属性,非常方便。打开这个界面的方式是点击界面左侧是python图标(图中红色圈出的)。上如下选择后将安装命令复制到 Anaconda Prompt 进行安装(cpu版本),这个创建并安装好ptyorch的环境可在pycharm中使用,就可以使用了。创建虚拟环境命令为:(my_pytorch_1 为新创建的虚拟环境名)在开始菜单中打开Anaconda Prompt;在哪个环境下执行命令就会安装到哪个环境下。界面的右上角new配置环境。原创 2025-04-11 08:00:00 · 457 阅读 · 0 评论 -
【深度学习】通过colab将本地的数据集上传到drive
本地数据集上传到colab很慢,而且断开后就没了,因此通过colab将本地的数据集上传到drive,即使断开连接,第二次连接后挂载drive后即可直接使用数据集。将本地数据集上传到colab的临时文件夹中,由于将文件夹上传到colab非常不方便,只能上传单个文件,因此这里上传压缩包,上传后再解压缩,从而得到在临时文件中的数据集文件夹。完成后可见:断开colab连接再重新连接colab,执行下面代码挂载drive后可见上传完成的数据集。将在临时文件中的数据集文件夹移到drive中。原创 2025-04-06 00:04:30 · 282 阅读 · 0 评论