【凸优化】Language对偶函数,Language对偶问题,强对偶性,弱对偶性,Slater约束准则(本质剖析)

目录

一、Language函数

二、Language对偶函数

三、Language对偶问题

四、强对偶性和弱对偶性

五、Slater约束准则


本文全篇红字。

一、Language函数

对于优化问题(1.1):

                                    \underset{x}{min}f_{0}(x)

                                    subject    to  g_{i}(x)\leq 0  ,  i=1,\cdot \cdot \cdot ,m

                      令其最优解为p^{*}

由于等式约束范围是一个仿射空间,比较大,不等式约束的范围可以是有限的集合,可讨论性比较大,这里问题(1.1)只考虑不等式约束。

以二维为例,目标函数和约束函数的图像如图:

绿色的为目标函数,红色的为约束函数,不等式约束范围为两条竖线l_{1}l_{2}之间

Language函数为:

L(x,\lambda )=f_{0}(x)+\lambda f_{1}(x)

Language函数的图像如图中黑色的图像:

其中\lambda从0到2变化。

二、Language对偶函数

Language对偶函数为:

                                                        g(\lambda )=\underset{x}{inf}L(x,\lambda )

如上图在Language图像中,当\lambda取值从0到2变化过程中,Language对偶函数的值先变大,后变小。

三、Language对偶问题

优化问题(1.1)的对偶问题是:

                                    \underset{x}{max}g(\lambda )

                                    subject   to  \lambda \succeq 0                                                (3.1)

令其在\lambda ^{*}处为最优解为d^{*}

由图可知,

           \lambda等0时,约束范围内的最小值p^{*}当然大于等于全局最小值g(\lambda ,\nu )

           \lambda大于0时,约束范围内的最小值会更小,所以约束范围内的最小值会比原\lambda等0时约束范围内的最小值更小,全局最小值又小于等于约束范围内的最小值,所以这种情况下全局最小值g(\lambda ,\nu )小于p^{*}

四、强对偶性和弱对偶性

原问题(1.1)的最优解是直线l_{1}与目标函数的交点p^{*}

观察(1.1)的对偶问题,g(\lambda )的最大值是多少呢,由图可以看出,l_{1}左侧在逐渐变大,右侧在逐渐减小,g(\lambda )的值(\lambda一定,在x上的最小值)原来在l_{1}左侧逐渐变大,后变到l_{1}右侧逐渐变小,所以g(\lambda )的最大值在l_{1}附近,但具体是不是g(\lambda )l_{1}的交点由原问题目标函数和约束函数决定。

下图这种情况为g(\lambda )的最大值不是g(\lambda )l_{1}的交点

这幅图与原图的区别是,在l_{1}左侧约束函数函数值不太大,而在l_{1}l_{2}之间函数值很小,即可能随着\lambda的增大,l_{1}左侧Language函数最小值还没超过p^{*}时,l_{1}右侧Language函数最小值已经比l_{1}左侧Language函数最小值还要小,也就是全局Language函数最小值从l_{1}的左侧跳到了l_{1}的右侧,即Language函数最小值(\lambda固定,x上的)的最大值(\lambda上的),也就是Language对偶函数的最大值d^{*}比Language函数与l_{1}的交点p^{*}小。这种情况被称为弱对偶性

反之当l_{1}左侧的最小值增大到等于p^{*}时,l_{1}右侧的最小值恰好减小到等于p^{*},这时Language对偶函数的最大值d^{*}等于p^{*},这种情况称为强对偶性。

五、Slater约束准则

接(四)中的讨论,当在强对偶性的条件下,解出了原问题的对偶问题的最优解d^{*},即是原问题的最优解p^{*},在弱对偶情况下,即使解除了对偶问题的最优解d^{*},也无法得到原问题准确的最优解p^{*},这种情况下只能确定对偶问题的最优解比原问题的最优解小,即得到了原问题的下界。

原问题符合哪些条件时,它与对偶问题有强对偶性呢?

条件一

原问题是凸问题,即目标函数是凸函数,不等式约束函数是凸函数,等式约束函数是仿射函数。

在这种情况下,强对偶性通常成立,但不总是成立

其他条件

除了凸条件外,还需要满足一些强对偶条件,这些条件称为约束准则,一个简单的约束准则是Slater约束准则

如下:

存在一点 x  \epsilon  relint  D 使得式      f_{i}(x)< 0     成立,即不等式约束严格成立。

注:(1)集合D是Language函数的定义域,即

                                   

        (2)relint  D  表示集合D的内点集,即不包括边界。

弱化的Slater约束准则

简言之,当约束函数f_{i}是仿射函数时,不等式约束不需要严格成立,但当约束函数f_{i}不是仿射函数时,不等式约束需要严格成立。称为弱化的Slater约束准则。

几何直观感觉强对偶性的条件

首先需要满足凸条件:如图

                            

红线、蓝线、绿线  分别为  目标函数、不等式约束函数、Language函数,竖直紫线和竖直黑线之间为不等式约束区域,\lambda变化范围为0-2,

图中绿线Language函数在各个位置的最小值构成的函数为Language对偶函数g(\lambda ),显然有最大值d^{*}=p^{*},下面有凸函数的性质说明理由:

Language函数是在目标函数上加上约束函数乘以权重\lambda,显然目标函数从最优点(图中红线与竖直紫线的交点)向左侧减小的速度比较缓,而从最优点向右增加的速度比较快;对于约束函数(蓝线),从紫线位置向左增大的很快,而向右减小的很慢,所有,紫线左侧极小值增大的速度比右侧极小值减小的速度快,即左侧极小值超过最优点不会比右侧最小值低于最优点的时间靠前,中间一定会有最优点那个点成为Language函数最小值的一刻,所以有d^{*}=p^{*},强对偶性成立。

下面举一个是凸问题,但不符合Slater准则且不是强对偶的例子。

这样的情况太过刁钻,所以我认为,正常的问题只要是凸问题,大部分都是强对偶的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值