【深度学习】两种数据集格式(Dataset和ImageFolder)

1、DatasetImageFolder 类型数据集的区别

Dataset 类型:

   Dataset 是 Hugging Face datasets 库中的一个抽象类,它用于处理从任何数据源加载的数据。它的设计使得用户可以处理各种类型的数据,包括文本、图像、音频等。每个数据集通常会被表示为一个字典,其中每个键对应一个数据字段(例如 imagelabel),每个值是该字段的数据(例如图像和标签)。此外,Dataset 还支持通过 .map() 函数来应用转换。

对于 Dataset 类型数据集:

  • 数据通常是以列表或字典的形式存储的。

  • 它提供了 .map().filter() 等操作,可以方便地对数据集进行转换。

  • 数据存储格式image 字段中的数据可能是 PIL 图像对象,或者是其他形式的图像数据。

ImageFolder 类型:

ImageFoldertorchvision 库中用于加载文件夹结构图像数据集的类它适用于按类分组文件夹的图像数据集,其中每个文件夹表示一个类别,包含该类别的图像。ImageFolder 会自动为每个子目录分配标签。

对于 ImageFolder 类型数据集:

  • 它假设数据集目录结构是按类别组织的,每个类别的图像位于各自的子目录中。

  • 自动为每个子目录生成标签(例如,class_0class_1 等)。

  • 数据存储格式:图像数据通常是 PIL.Image 对象,标签是整数。

  • 使用 .transform 可以在加载时对图像进行预处理。

2、是否可以直接传入 DataLoader

  • ImageFolder 类型:可以直接传入 DataLoader,因为它本身已经实现了对图像数据的处理,并且返回一个由图像和标签组成的元组。

  • Dataset 类型:需要确保数据集中包含了可以直接处理的图像数据(例如 PIL.ImageTensor 类型的图像),并且 DataLoader 可以通过 collate_fn 来处理批次。如果你的数据集是从 datasets 库加载的,它通常是一个字典,包含多个字段,你需要在 DataLoader 中指定 collate_fn 来对这些数据进行打包。

3、如何转换两个数据集?

ImageFolder 转换为 Dataset 类型(Hugging Face datasets):

你可以通过 datasets 库中的 Dataset 类来手动转换数据。首先,你需要读取 ImageFolder 数据集中的图像,并将它们存储到一个 Dataset 对象中。

import os
from torchvision import datasets, transforms
from datasets import Dataset
from PIL import Image

# 定义转换
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
])

# 加载 ImageFolder 数据集
imagefolder = datasets.ImageFolder(root='/path/to/imagenet200', transform=transform)

# 创建 Hugging Face Dataset
data = {
    'image': [imagefolder[i][0] for i in range(len(imagefolder))],
    'label': [imagefolder[i][1] for i in range(len(imagefolder))],
}

dataset = Dataset.from_dict(data)

# 检查类型
print(type(dataset))
Dataset 类型转换为 ImageFolder 类型:

如果你已经有一个 Dataset 类型的数据集(例如来自 datasets 库),并且想要将其转换为 ImageFolder 类型,通常需要将数据按目录结构进行分配和组织。你可以手动创建文件夹,并将图像数据保存到这些文件夹中,然后使用 ImageFolder 来加载。

import os
from torchvision import datasets
from PIL import Image

# 假设数据集中包含图像和标签
images = dataset['image']
labels = dataset['label']

# 创建目录
dataset_root = '/path/to/save/converted_data'
for i in range(max(labels) + 1):  # 假设标签从 0 开始
    os.makedirs(os.path.join(dataset_root, str(i)), exist_ok=True)

# 将图像保存到相应的目录
for idx, (image, label) in enumerate(zip(images, labels)):
    image_path = os.path.join(dataset_root, str(label), f'{idx}.png')
    image.save(image_path)

# 使用 ImageFolder 加载
imagefolder = datasets.ImageFolder(root=dataset_root, transform=transform)

# 检查类型
print(type(imagefolder))

4、如何用 DataLoader 加载这两个数据集?

无论是 ImageFolder 还是 Dataset 类型,最终你都可以使用 DataLoader 来加载数据并进行批处理:

from torch.utils.data import DataLoader

# 对于 ImageFolder 类型
train_loader = DataLoader(imagefolder, batch_size=64, shuffle=True, num_workers=4)

# 对于 Dataset 类型
train_loader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=4)

小结:

  • ImageFolder 是一个专门用于加载图像数据集的类,适用于数据集目录按类别组织的情况,能够自动处理图像和标签。

  • Dataset 类型数据集适用于多种数据格式,可以存储更复杂的数据结构,灵活性更高,但通常需要手动处理数据格式。

  • 转换方法:可以通过 Dataset 类的 from_dict 方法将 ImageFolder 数据转换为 Dataset 类型;反之,则需要手动组织目录并使用 ImageFolder 加载数据。

这两种数据集类型可以根据实际需求相互转换,并最终通过 DataLoader 来加载并批处理数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值