Grok-3成功证明仅仅是玩笑,xAI的工程师Hieu-Pham真会玩儿。
(笔记模板由python脚本于2024年12月09日 12:26:42创建,本篇笔记适合任何的coder翻阅)
-
Python 官网:https://www.python.org/
-
Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅是基础那么简单……
地址:https://lqpybook.readthedocs.io/
自学并不是什么神秘的东西,一个人一辈子自学的时间总是比在学校学习的时间长,没有老师的时候总是比有老师的时候多。
—— 华罗庚
- My CSDN主页、My HOT博、My Python 学习个人备忘录
- 好文力荐、 老齐教室

本文质量分:
本文地址: https://blog.csdn.net/m0_57158496/
CSDN质量分查询入口:http://www.csdn.net/qc
- ◆ 黎曼猜想被Grok-3“成功证明”?
- 1、名词解释
- 1.1 Hieu Pham
- 1.2 黎曼猜想
- 黎曼 ζ ζ ζ 函数
- 黎曼猜想的表述
- 重要性
- 影响
- 研究进展
- 2、夸张标题
- 3、一个悖论
- 4、Is “成功证明”?
- 4.1 “成功证明”不是“一个人”的事儿
- 4.2 谁来证明Grok-3的成果
- 5、结语
- 6、花絮
◆ 黎曼猜想被Grok-3“成功证明”?
G
r
o
k
−
3
Grok-3
Grok−3 成功证明仅仅是玩笑,xAI
的工程师Hieu-Pham
真会玩儿。😜
1、名词解释
1.1 Hieu Pham
- Hieu Pham其人:
H i e u P h a m Hieu Pham HieuPham 是一位在人工智能领域活跃的研究员,与马斯克创立的 x A I xAI xAI公司有关联。他曾在社交媒体上宣称 x A I xAI xAI开发的第三代人工智能模型Grok-3
成功证明了数学上的重大难题——黎曼猜想。这一消息迅速引起了广泛关注和讨论。然而,随后Pham澄清说这只是一个恶作剧,灵感来源于小说 。
Pham的这一行为虽然是一场玩笑,但引发了关于科学传播、技术伦理以及公众对AI技术期待之间的复杂互动的讨论。他的玩笑在社交媒体上引起了广泛的关注,许多人最初信以为真,这反映出了人们对于AI技术的期待和对科学突破的渴望 。
Hieu Pham 本人是斯坦福大学的优秀毕业生,曾在国际大赛中多次获奖,并在谷歌团队中有显著的研发业绩。因此,他的这一恶作剧帖子在最初被许多人视为可信,进一步加剧了这一事件的传播 。
1.2 黎曼猜想
黎曼猜想是数学中的一个未解决问题,它是由德国数学家伯恩哈德·黎曼(Bernhard Riemann)在1859年提出的。这个猜想是关于黎曼ζ函数(Riemann zeta function)的零点的分布的。以下是关于黎曼猜想的基本科普信息:
黎曼 ζ ζ ζ 函数
黎曼 ζ ζ ζ 函数是一个复变函数,定义为:$ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} $对于实部大于1的复数s,这个级数是收敛的。黎曼扩展了这个函数到整个复平面(除了s=1这一点),这就是所谓的解析延拓。
黎曼猜想的表述
&emsp?黎曼猜想是关于黎曼ζ函数非平凡零点的实部的。非平凡零点是指不在负偶数上的零点(因为ζ函数在负偶数上有所谓的平凡零点)<-font>。黎曼猜想表述如下:
所 有 非 平 凡 零 点 的 实 部 都 是 1 / 2 所有非平凡零点的实部都是1/2 所有非平凡零点的实部都是1/2
换句话说,如果\rho是ζ函数的一个非平凡零点,那么\text{Re}(\rho) = 1/2。
重要性
黎曼猜想之所以重要,是因为它与素数的分布紧密相关。素数是大于1的自然数中,只能被1和它本身整除的数。黎曼ζ函数与素数分布之间的关系是通过素数定理(Prime Number Theorem)体现的,该定理描述了素数在自然数中的分布趋势。
如果黎曼猜想被证明是正确的,它将提供对素数分布更深入的理解。此外,黎曼猜想的证明可能会带来数学分析领域的新工具和技术,因为它涉及到复分析和数论的深层次问题。
影响
黎曼猜想是克雷数学研究所(Clay Mathematics Institute)提出的“千禧年大奖难题”之一,任何证明或反驳黎曼猜想的人都将获得100万美元的奖金。
研究进展
尽管有许多数学家尝试证明黎曼猜想,但至今没有人成功。有关于零点分布的许多研究成果,但猜想本身仍然是一个悬而未决的问题。
黎曼猜想是数学中最著名的未解决问题之一,它的解决将对数学产生深远的影响。
2、夸张标题
我
《ai证明了黎曼猜想,科学家要失业了》
这标题是夸张还是描述?😋
ai学伴
这个标题是夸张的描述。黎曼猜想是数学上的一个未解决问题,它是关于黎曼ζ函数零点的分布的猜想。如果AI或者任何人证明了黎曼猜想,这将是数学界的一个巨大突破,但这并不意味着科学家会因此失业。
科学研究是一个不断进步的过程,每一个问题的解决往往都会带来更多新的问题。AI在科学研究中的应用通常被视为一种工具,它可以辅助科学家进行数据分析、模拟实验等,但科学研究的深度和广度远远超出了机器的能力,特别是涉及到理论创新、科学直觉和复杂决策时,人类科学家的作用是不可或缺的。
因此,AI证明黎曼猜想这样的成就应当被视为人类智慧的延伸,是科技进步带给我们的积极成果,而不是科学家失业的信号。实际上,这样的突破可能会创造新的研究领域和工作机会,激励更多的科学家投入到探索未知世界的行列中。
3、一个悖论
我
如果只有ai证明了猜想,哪谁来证明ai是对的?!
这标题我一看到就发现它是一个悖论。😋😋😋
ai学伴
确实,这个标题中包含了一个悖论。如果假设只有AI证明了某个数学猜想,那么确实会面临一个问题:谁来验证AI的证明是正确的?
在数学领域,一个证明是否正确需要经过同行的严格审查和验证。
这个过程通常包括以下几个步骤:
- 详细审查: 其他数学家会仔细检查证明的每一步,确保逻辑是严密的,没有跳步或逻辑上的错误。
- 复现证明: 有时,其他研究者会尝试独立复现证明过程,以确认结果的正确性。
4、Is “成功证明”?
4.1 “成功证明”不是“一个人”的事儿
我
当一个猜想变现成为可能,没有唯一的证明者,只有最先。🤗🤗🤗
ai学伴
这句话表达了一个关于科学发现和数学证明的重要观点:在科学和数学领域,通常只有第一个被公认的正确证明或发现会被记入历史,而后续的证明或发现,即使它们是独立完成的,也可能不会得到同样的认可。
在数学中,这通常被称为“优先权原则”,即科学界通常只承认第一个公开发表并被同行评审接受的证明。
以下是一些相关的考虑:
- 最先原则:
科学界鼓励快速发表研究成果,以确立优先权。第一个发表重要发现的科学家通常会得到最大的认可。 - 独立发现:
有时,不同的研究团队可能几乎同时独立地发现或证明了相同的事物。尽管如此,科学史通常只会记住第一个公开发表的成果。 - 同行评审:
发表在学术期刊上的研究需要经过同行评审过程,这有助于确保成果的准确性和重要性。 - 后续贡献:
即使后续的证明或发现不是第一个,它们仍然可能对理解该领域做出重要贡献,或者提供新的视角和方法。
因此,当一个猜想最终被证明时,确实可能会有多个人或团队同时或几乎同时取得突破,但通常只有最先被公认的那个证明会被广泛记载和庆祝。然而,这并不减少其他独立工作的重要性,它们也是科学进步不可或缺的一部分。
4.2 谁来证明Grok-3的成果
我
Grok-3成功证明了黎曼猜想?
谁来证明它成功的?是它自已还是另有ai?
听起来,应该没有人类可以证明。
这“成功”,哪来的?马克斯自已!
就是一个蹩足的ai广告而已。(个人观点,一笑而过😜😜)
ai学伴
您的观点表达了对AI在数学证明方面能力的合理怀疑。确实,如果Grok-3或者其他AI模型声称证明了黎曼猜想,以下是一些需要考虑的关键点:
- 验证过程:
任何数学证明都需要经过严格的同行评审过程。这通常意味着其他数学家需要审查证明的每一步,确保逻辑是连贯和正确的。AI的证明也不例外。 - 人类验证:
尽管AI可能提出了证明,但最终验证证明有效性的通常是人类数学家。这是因为数学证明不仅仅是逻辑上的正确性,还涉及到证明的创造性和深度,这些是目前AI难以完全掌握的。 - AI自我验证的问题:
如果AI声称自己验证了自己的证明,这是不够的。自我验证缺乏独立性和客观性,这是科学研究中的一个基本原则。 - 广告嫌疑:
如您所说,如果这样的声明没有经过同行评审或独立验证,它可能会被视为一种营销手段或广告。在科学界,这样的声明需要谨慎对待,并且需要有充分的证据和验证过程。马克斯的声明:如果声明来自某个公司或个人的自我宣传,那么它应该被更加谨慎地对待。在科学研究中,声明的可信度通常与声明的来源和验证过程有关。
总之,黎曼猜想的证明是一个高度复杂的问题,如果AI真的提出了一个证明,它需要经过数学界的严格审查。在没有这样的审查之前,任何声称AI已经“成功证明”黎曼猜想的说法都应该被视为未经验证的,并且可能带有广告或宣传的目的。科学界对于这样的声明通常会持怀疑态度,直到有充分的证据支持它们。
5、结语
现在是电子信息时代,从去年起又有智能
a
i
ai
ai的大力加持,让讯息的获取更加易容。
在讯息便捷的同时,对讯息的甄别更为重要。对不“人云亦云”也是我们一项必修技能。
6、花絮
当ai不刚屌您时,调整提问字词,一般可以收到满意回复。💪💪💪
截屏图片
上一篇: “切片赋值”创建列表批量操作“新”方法(Python)([start:end]=切片赋值,扩展了list批量增减元素的操作能力)
下一篇:
我的HOT博:
本次共计收集404篇博文笔记信息,总阅读量61.76w。数据采集于2024年11月25日 08:23:38,用时7分56.4秒。阅读量不小于6.00k的有
9
9
9篇。
- 让QQ群昵称色变的神奇代码
地址:https://blog.csdn.net/m0_57158496/article/details/122566500
浏览阅读:6.2w
点赞:25 收藏:89 评论:17
(本篇笔记于2022-01-18 19:15:08首次发布,最后修改于2022-01-20 07:56:47)
- Python列表(list)反序(降序)的7种实现方式
地址:https://blog.csdn.net/m0_57158496/article/details/128271700
浏览阅读:1.3w
点赞:9 收藏:40 评论:8
(本篇笔记于2022-12-11 23:54:15首次发布,最后修改于2023-03-20 18:13:55)
- pandas 数据类型之 DataFrame
地址:https://blog.csdn.net/m0_57158496/article/details/124525814
浏览阅读:1.0w
点赞:7 收藏:40
(本篇笔记于2022-05-01 13:20:17首次发布,最后修改于2022-05-08 08:46:13)
- 个人信息提取(字符串)
地址:https://blog.csdn.net/m0_57158496/article/details/124244618
浏览阅读:1.0w
点赞:3 收藏:20
(本篇笔记于2022-04-18 11:07:12首次发布,最后修改于2022-04-20 13:17:54)
- 罗马数字转换器|罗马数字生成器
地址:https://blog.csdn.net/m0_57158496/article/details/122592047
浏览阅读:8.2k
收藏:3
(本篇笔记于2022-01-19 23:26:42首次发布,最后修改于2022-01-21 18:37:46)
- 统计字符串字符出现的次数
地址:https://blog.csdn.net/m0_57158496/article/details/130517025
浏览阅读:8.1k
点赞:5 收藏:24
(本篇笔记于2023-05-06 22:28:18首次发布,最后修改于2023-05-12 06:21:40)
- Python字符串居中显示
地址:https://blog.csdn.net/m0_57158496/article/details/122163023
浏览阅读:8.0k
点赞:1 收藏:12 评论:1
- 回车符、换行符和回车换行符
地址:https://blog.csdn.net/m0_57158496/article/details/123109488
浏览阅读:6.7k
点赞:2 收藏:4
(本篇笔记于2022-02-24 13:10:02首次发布,最后修改于2022-02-25 20:07:40)
- python清屏
地址:https://blog.csdn.net/m0_57158496/article/details/120762101
浏览阅读:6.1k
点赞:1 收藏:10
截屏图片
(此文涉及ChatPT,曾被csdn多次下架,前几日又因新发笔记被误杀而落马。躺“未过审”还不如回收站,回收站还不如永久不见。😪值此年底清扫,果断移除。留此截图,以识“曾经”。2023-12-31)

精品文章:
- 好文力荐:齐伟书稿 《python 完全自学教程》 Free连载(已完稿并集结成书,还有PDF版本百度网盘永久分享,点击跳转免费🆓下载。)
- OPP三大特性:封装中的property
- 通过内置对象理解python'
- 正则表达式
- python中“*”的作用
- Python 完全自学手册
- 海象运算符
- Python中的 `!=`与`is not`不同
- 学习编程的正确方法
来源:老齐教室
◆ Python 入门指南【Python 3.6.3】
好文力荐:
- 全栈领域优质创作者——[寒佬](还是国内某高校学生)博文“非技术文—关于英语和如何正确的提问”,“英语”和“会提问”是编程学习的两大利器。
- 【8大编程语言的适用领域】先别着急选语言学编程,先看它们能干嘛
- 靠谱程序员的好习惯
- 大佬帅地的优质好文“函数功能、结束条件、函数等价式”三大要素让您认清递归
CSDN实用技巧博文: