黎曼猜想被ai证明?

Grok-3成功证明仅仅是玩笑,xAI的工程师Hieu-Pham真会玩儿。


(笔记模板由python脚本于2024年12月09日 12:26:42创建,本篇笔记适合任何的coder翻阅)


【学习的细节是欢悦的历程】


  自学并不是什么神秘的东西,一个人一辈子自学的时间总是比在学校学习的时间长,没有老师的时候总是比有老师的时候多。
            —— 华罗庚


等风来,不如追风去……


Grok-3成功证明仅仅是玩笑
黎曼猜想被AI证明?
(xAI的工程师Hieu-Pham真会玩儿)


本文质量分:

94 94 94

本文地址: https://blog.csdn.net/m0_57158496/

CSDN质量分查询入口:http://www.csdn.net/qc


目 录

  • ◆ 黎曼猜想被Grok-3“成功证明”?
    • 1、名词解释
      • 1.1 Hieu Pham
      • 1.2 黎曼猜想
        • 黎曼 ζ ζ ζ 函数
        • 黎曼猜想的表述
        • 重要性
        • 影响
        • 研究进展
    • 2、夸张标题
    • 3、一个悖论
    • 4、Is “成功证明”?
      • 4.1 “成功证明”不是“一个人”的事儿
      • 4.2 谁来证明Grok-3的成果
    • 5、结语
    • 6、花絮


◆ 黎曼猜想被Grok-3“成功证明”?


   G r o k − 3 Grok-3 Grok3 成功证明仅仅是玩笑,xAI的工程师Hieu-Pham真会玩儿。😜


1、名词解释


1.1 Hieu Pham


  • Hieu Pham其人:

       H i e u P h a m Hieu Pham HieuPham 是一位在人工智能领域活跃的研究员,与马斯克创立的 x A I xAI xAI公司有关联。他曾在社交媒体上宣称 x A I xAI xAI开发的第三代人工智能模型Grok-3成功证明了数学上的重大难题——黎曼猜想。这一消息迅速引起了广泛关注和讨论。然而,随后Pham澄清说这只是一个恶作剧,灵感来源于小说 。
      Pham的这一行为虽然是一场玩笑,但引发了关于科学传播、技术伦理以及公众对AI技术期待之间的复杂互动的讨论。他的玩笑在社交媒体上引起了广泛的关注,许多人最初信以为真,这反映出了人们对于AI技术的期待和对科学突破的渴望 。
      Hieu Pham 本人是斯坦福大学的优秀毕业生,曾在国际大赛中多次获奖,并在谷歌团队中有显著的研发业绩。因此,他的这一恶作剧帖子在最初被许多人视为可信,进一步加剧了这一事件的传播 。

1.2 黎曼猜想


  黎曼猜想是数学中的一个未解决问题,它是由德国数学家伯恩哈德·黎曼(Bernhard Riemann)在1859年提出的。这个猜想是关于黎曼ζ函数(Riemann zeta function)的零点的分布的。以下是关于黎曼猜想的基本科普信息:


黎曼 ζ ζ ζ 函数

  黎曼 ζ ζ ζ 函数是一个复变函数,定义为:$ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} $对于实部大于1的复数s,这个级数是收敛的。黎曼扩展了这个函数到整个复平面(除了s=1这一点),这就是所谓的解析延拓。


黎曼猜想的表述

 &emsp?黎曼猜想是关于黎曼ζ函数非平凡零点的实部的。非平凡零点是指不在负偶数上的零点(因为ζ函数在负偶数上有所谓的平凡零点)<-font>。黎曼猜想表述如下:

所 有 非 平 凡 零 点 的 实 部 都 是 1 / 2 所有非平凡零点的实部都是1/2 1/2

换句话说,如果\rho是ζ函数的一个非平凡零点,那么\text{Re}(\rho) = 1/2。


重要性

  黎曼猜想之所以重要,是因为它与素数的分布紧密相关。素数是大于1的自然数中,只能被1和它本身整除的数。黎曼ζ函数与素数分布之间的关系是通过素数定理(Prime Number Theorem)体现的,该定理描述了素数在自然数中的分布趋势。
  如果黎曼猜想被证明是正确的,它将提供对素数分布更深入的理解。此外,黎曼猜想的证明可能会带来数学分析领域的新工具和技术,因为它涉及到复分析和数论的深层次问题。


影响

  黎曼猜想是克雷数学研究所(Clay Mathematics Institute)提出的“千禧年大奖难题”之一,任何证明或反驳黎曼猜想的人都将获得100万美元的奖金。


研究进展

  尽管有许多数学家尝试证明黎曼猜想,但至今没有人成功。有关于零点分布的许多研究成果,但猜想本身仍然是一个悬而未决的问题。
  黎曼猜想是数学中最著名的未解决问题之一,它的解决将对数学产生深远的影响。



回页目录


2、夸张标题


  • 《ai证明了黎曼猜想,科学家要失业了》

    这标题是夸张还是描述?😋


  • ai学伴

      这个标题是夸张的描述。黎曼猜想是数学上的一个未解决问题,它是关于黎曼ζ函数零点的分布的猜想。如果AI或者任何人证明了黎曼猜想,这将是数学界的一个巨大突破,但这并不意味着科学家会因此失业。
      科学研究是一个不断进步的过程,每一个问题的解决往往都会带来更多新的问题。AI在科学研究中的应用通常被视为一种工具,它可以辅助科学家进行数据分析、模拟实验等,但科学研究的深度和广度远远超出了机器的能力,特别是涉及到理论创新、科学直觉和复杂决策时,人类科学家的作用是不可或缺的。
      因此,AI证明黎曼猜想这样的成就应当被视为人类智慧的延伸,是科技进步带给我们的积极成果,而不是科学家失业的信号。实际上,这样的突破可能会创造新的研究领域和工作机会,激励更多的科学家投入到探索未知世界的行列中。



回页目录


3、一个悖论


  • 如果只有ai证明了猜想,哪谁来证明ai是对的?!

    这标题我一看到就发现它是一个悖论。😋😋😋


  • ai学伴

      确实,这个标题中包含了一个悖论。如果假设只有AI证明了某个数学猜想,那么确实会面临一个问题:谁来验证AI的证明是正确的?
      在数学领域,一个证明是否正确需要经过同行的严格审查和验证。

  • 这个过程通常包括以下几个步骤:
  1. 详细审查: 其他数学家会仔细检查证明的每一步,确保逻辑是严密的,没有跳步或逻辑上的错误。
  2. 复现证明: 有时,其他研究者会尝试独立复现证明过程,以确认结果的正确性。



回页目录


4、Is “成功证明”?


4.1 “成功证明”不是“一个人”的事儿


  • 当一个猜想变现成为可能,没有唯一的证明者,只有最先。🤗🤗🤗


  • ai学伴

      这句话表达了一个关于科学发现和数学证明的重要观点:在科学和数学领域,通常只有第一个被公认的正确证明或发现会被记入历史,而后续的证明或发现,即使它们是独立完成的,也可能不会得到同样的认可。
      在数学中,这通常被称为“优先权原则”,即科学界通常只承认第一个公开发表并被同行评审接受的证明。

  • 以下是一些相关的考虑:
  1. 最先原则:
      科学界鼓励快速发表研究成果,以确立优先权。第一个发表重要发现的科学家通常会得到最大的认可。
  2. 独立发现:
      有时,不同的研究团队可能几乎同时独立地发现或证明了相同的事物。尽管如此,科学史通常只会记住第一个公开发表的成果。
  3. 同行评审:
      发表在学术期刊上的研究需要经过同行评审过程,这有助于确保成果的准确性和重要性。
  4. 后续贡献:
      即使后续的证明或发现不是第一个,它们仍然可能对理解该领域做出重要贡献,或者提供新的视角和方法。

  因此,当一个猜想最终被证明时,确实可能会有多个人或团队同时或几乎同时取得突破,但通常只有最先被公认的那个证明会被广泛记载和庆祝。然而,这并不减少其他独立工作的重要性,它们也是科学进步不可或缺的一部分。



回页目录


4.2 谁来证明Grok-3的成果


  • Grok-3成功证明了黎曼猜想?
    谁来证明它成功的?是它自已还是另有ai?
    听起来,应该没有人类可以证明。
    这“成功”,哪来的?马克斯自已!

    就是一个蹩足的ai广告而已。(个人观点,一笑而过😜😜)


  • ai学伴

      您的观点表达了对AI在数学证明方面能力的合理怀疑。确实,如果Grok-3或者其他AI模型声称证明了黎曼猜想,以下是一些需要考虑的关键点:
  1. 验证过程:
      任何数学证明都需要经过严格的同行评审过程。这通常意味着其他数学家需要审查证明的每一步,确保逻辑是连贯和正确的。AI的证明也不例外。
  2. 人类验证:
      尽管AI可能提出了证明,但最终验证证明有效性的通常是人类数学家。这是因为数学证明不仅仅是逻辑上的正确性,还涉及到证明的创造性和深度,这些是目前AI难以完全掌握的。
  3. AI自我验证的问题:
      如果AI声称自己验证了自己的证明,这是不够的。自我验证缺乏独立性和客观性,这是科学研究中的一个基本原则。
  4. 广告嫌疑:
      如您所说,如果这样的声明没有经过同行评审或独立验证,它可能会被视为一种营销手段或广告。在科学界,这样的声明需要谨慎对待,并且需要有充分的证据和验证过程。马克斯的声明:如果声明来自某个公司或个人的自我宣传,那么它应该被更加谨慎地对待。在科学研究中,声明的可信度通常与声明的来源和验证过程有关。

  总之,黎曼猜想的证明是一个高度复杂的问题,如果AI真的提出了一个证明,它需要经过数学界的严格审查。在没有这样的审查之前,任何声称AI已经“成功证明”黎曼猜想的说法都应该被视为未经验证的,并且可能带有广告或宣传的目的。科学界对于这样的声明通常会持怀疑态度,直到有充分的证据支持它们。



回页目录


5、结语


  现在是电子信息时代,从去年起又有智能 a i ai ai的大力加持,让讯息的获取更加易容。
  在讯息便捷的同时,对讯息的甄别更为重要。对不“人云亦云”也是我们一项必修技能。



回页目录


6、花絮


  当ai不刚屌您时,调整提问字词,一般可以收到满意回复。💪💪💪


  • 截屏图片
    在这里插入图片描述



回页首


上一篇:  “切片赋值”创建列表批量操作“新”方法(Python)([start:end]=切片赋值,扩展了list批量增减元素的操作能力)
下一篇: 



我的HOT博:

  本次共计收集404篇博文笔记信息,总阅读量61.76w。数据采集于2024年11月25日 08:23:38,用时7分56.4秒。阅读量不小于6.00k的有 9 9 9篇。

  1. 让QQ群昵称色变的神奇代码
    地址:https://blog.csdn.net/m0_57158496/article/details/122566500
    浏览阅读:6.2w
    点赞:25 收藏:89 评论:17
    (本篇笔记于2022-01-18 19:15:08首次发布,最后修改于2022-01-20 07:56:47)

  2. Python列表(list)反序(降序)的7种实现方式
    地址:https://blog.csdn.net/m0_57158496/article/details/128271700
    浏览阅读:1.3w
    点赞:9 收藏:40 评论:8
    (本篇笔记于2022-12-11 23:54:15首次发布,最后修改于2023-03-20 18:13:55)

  3. pandas 数据类型之 DataFrame
    地址:https://blog.csdn.net/m0_57158496/article/details/124525814
    浏览阅读:1.0w
    点赞:7 收藏:40 
    (本篇笔记于2022-05-01 13:20:17首次发布,最后修改于2022-05-08 08:46:13)

  4. 个人信息提取(字符串)
    地址:https://blog.csdn.net/m0_57158496/article/details/124244618
    浏览阅读:1.0w
    点赞:3 收藏:20 
    (本篇笔记于2022-04-18 11:07:12首次发布,最后修改于2022-04-20 13:17:54)

  5. 罗马数字转换器|罗马数字生成器
    地址:https://blog.csdn.net/m0_57158496/article/details/122592047
    浏览阅读:8.2k
    收藏:3 
    (本篇笔记于2022-01-19 23:26:42首次发布,最后修改于2022-01-21 18:37:46)

  6. 统计字符串字符出现的次数
    地址:https://blog.csdn.net/m0_57158496/article/details/130517025
    浏览阅读:8.1k
    点赞:5 收藏:24 
    (本篇笔记于2023-05-06 22:28:18首次发布,最后修改于2023-05-12 06:21:40)

  7. Python字符串居中显示
    地址:https://blog.csdn.net/m0_57158496/article/details/122163023
    浏览阅读:8.0k
    点赞:1 收藏:12 评论:1
  8. 回车符、换行符和回车换行符
    地址:https://blog.csdn.net/m0_57158496/article/details/123109488
    浏览阅读:6.7k
    点赞:2 收藏:4 
    (本篇笔记于2022-02-24 13:10:02首次发布,最后修改于2022-02-25 20:07:40)

  9. python清屏
    地址:https://blog.csdn.net/m0_57158496/article/details/120762101
    浏览阅读:6.1k
    点赞:1 收藏:10 

推荐条件 阅读量突破6.00k
(更多热博,请点击蓝色文字跳转翻阅)

  • 截屏图片
    在这里插入图片描述
      (此文涉及ChatPT,曾被csdn多次下架,前几日又因新发笔记被误杀而落马。躺“未过审”还不如回收站,回收站还不如永久不见。😪值此年底清扫,果断移除。留此截图,以识“曾经”。2023-12-31)



回页首


老齐漫画头像

精品文章:

来源:老齐教室


Python 入门指南【Python 3.6.3】


好文力荐:


CSDN实用技巧博文:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦幻精灵_cq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值