ultra fast lane detection训练自己的数据集

在尝试训练车道线检测模型时遇到标签值错误的问题,通过研究culane数据集,了解到标签应根据类别设置,例如背景为0,车道线为1,2,3,4等。解决方案包括创建特定文件结构,包括img(原始图片)、seg(标签图片)和list(包含train_gt.txt)文件夹。标签图片的正确性可以用代码检查,train_gt.txt的格式需包含图片和标签的相对路径。完成这些设置后,即可开始训练。" 119962281,10797993,Vue全家桶学习笔记:模块化规范、Webpack与Element-UI使用,"['前端开发', 'Vue.js', 'JavaScript', 'Node.js']
摘要由CSDN通过智能技术生成

哇,这个问题简直搞死我,一直报错,错误就是很经典的那一套,我懒得贴了,总而言之,就是说标签值不对。

我认真阅读了作者的知乎回答 他一直说标准分割数据集 就可以训练 我哪知道什么是标准分割数据集呢 还有人一直说是二值标签
但是其实不是哈 不是二值标签 大家知道语义分割训练的时候 标签的像素 是根据类别设置的 比如背景是0,然后dog 是1,cat是2…这个也是这么要求的

这也是为什么我的程序一直跑不通的原因

我认真研究了culane数据集的标签 得到了这个结果

所以 最重要的问题来了 到底怎么设置呢

非常简单(但是我还是搞了很久)

设置一个data_root文件夹名字随便取 我的是my_culane
然后里面放三个个文件夹 一个img存放用于训练的原图 另一个seg用来存放标签图片 还有一个list文件夹里面存放train_gt.txt
(为什么train_gt.txt一定要存放在list文件夹里面呢 这是因为 dataloder.py默认train_gt就在data_root文件夹下面的list文件夹下面,如果有别的文件夹安排格式可以改一下dataloader 但是我是觉得没必要啦)

img中的图片
seg中的图片

如果你不确定 label图片是否符合像素要求 可以用下面的语句检查一下

path 
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值