【轻量级网络】经典网络模型--ShuffleNet详解

ShuffleNet

ShuffleNet使用是一种计算效率极高的CNN架构,它是专门为计算能力非常有限的移动设备设计的;

通过逐点分组卷积(Pointwise Group Convolution)和通道洗牌(Channel Shuffle)两种新运算,在保持精度的同时大大降低了计算成本。

原论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

ShuffleNet详解

背景介绍

在最先进的基础网络中,像ResNet在非常小的网络中效率会降低,因为密集的1*1卷积代价很高;基于此作者提出了Pointwise group convolution以减少计算复杂度;又为克制pointwise group convolution带来的副作用,提出了channel shuffle的操作,用于实现信息在特征通道之间的流动。

Group Convolution

分组卷积的概念首先是AlexNet中引入的,用于将模型分布到两块GPU上;

在Xception和MobileNet中使用的深度可分离卷积(depthwise separable convolution)也都印证了它的有效性;

在小型网络中,昂贵的逐点卷积会导致满足复杂度约束的通道数量有限,从而验证的影响精度;

最直接的解决方案:采用通道稀疏连接(channel sparse connections),例如分组卷积可以大大降低计算成本;

这样会出现一个问题:某个通道的输出只能来自一小部分输入通道,这样阻止了通道之间的信息流,也就削弱了神经网络表达能力;

作者进一步将分组卷积和深度可分离卷积推广为一种新的形式--利用通道洗牌操作(Channel Shuffle Operation)

Channel Shuffle

通过通道洗牌允许分组卷积从不同的组中获取输入数据,从而实现输入通道和输出通道相关联。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三金无盖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值