
对△i0k和△j0k分别运用正弦定理建立关系式:
△i0k和△j0k的情况如图所示:
然后对其运用正弦定理建立等式:
同理可得:
仅仅是单纯考虑α之间的关系肯定是不够的,也需要考虑θk锐角和钝角的情况。
图6 当θk为钝角
很显然,这样分析与之前的α的三种情况区别不大,但有总比没有好。
--------------------------------------------------------------------手动分割--------------------------------------------------------------------------------------------------------------接下来是方程的求解:
同理可得:
计算出来的θk根据原点对称有两个解,由于被接受信号无人机位置只有微小偏差,所以只有唯一解,需要对输出的θk确定取值范围,根据小问(3)可知极径的最大偏差为12,所以设定最大极径偏差为14,还有小问(3)输出的偏差最大为0.28rad,所以设定最大角度偏差为50/180,即:
接下来就是对之前定位模型的验证:
计算出来的rk=99.37与设定的理想圆的半径(100)几乎相等,说明第(1)小问正弦定位模型的准确性很高。
问题(2):
问题中只已知编号FY00(0,0),FY01(R,0)的位置无偏差,这时需要对外围圆周中的8架,第一次随机选择一架无人机,当未知数大于方程个数时,这时需要随机选择两架无人机,再次列出正弦公式,对比未知数和方程数的个数,当未知量与方程数相等时,就可以求解定位方程组。只不过需要添加约束来解出具体增加的无人机编号。
模型汇总:
很遗憾,当时没有时间,对第二小问并未进行验证。但思路基本是对的。
问题(3):
求解前的准备:
1.筛选作为信号发射源的无人机
将表的数据与各点的理想位置数据进行相减,得到10个无人机和角度的差值:
再计算每架无人机初始位置与理想位置的距离,筛选距离最小的无人机,将其定为发射源。运用欧氏距离对距离进行求解,有关距离的阴影部分可以近似看作△,记第n架无人机的弧长为:
其中△θn是圆心角度数(弧度制),R是半径。
第n架无人机初始位置与理想位置的距离为:
但第一小问中,α是已知的,第三小问的阿尔法与第一小问的阿尔法有点小小的不同,需建立方程进行求解:
在等腰△0jk中:
偏差优化模型的建立:
模型的求解:
误差迭代曲线
无人机迭代图:
具体调整方案为:
本人不会改格式,所以文章格式很乱,且思路不是很清晰,实在不好意思,大家将就着看吧。
Q:作者大大,模型求解里的1.36是指的前面的哪个公式呢?
A:如下图所示
Q:博主,请问这个第一题第三问的优化目标函数具体是啥呀,前面不是已经求出来偏差距离了吗,这个优化的方程不是很理解。
A:因为你算了一次后会有9组数据,所以选择小的三个进行信号源就行了。 就如下图所示
Q:想问问作者大大第三问那个第n架无人机弧长计算公式啥意思呀
A:这是个弧长公式,你可以百度下。我当时好像是直接用欧氏距离算的,只是论文这样写的而已,具体也记不清楚了,抱歉。
Q:模型求解里的1.14和1.36是前面的哪两个公式呀
A:1.36在上面已经答复,这里给出1.14
Q:代码可以传github吗,想参考学习一下
A:论文投了会公开代码,不幸的是代码现在不见了,得我考完研再重新写(cry.JPG)