多元回归预测 | Matlab麻雀算法(SSA)优化卷积神经网络-双向长短期记忆网络(CNN-BILSTM)回归预测,SSA-CNN-BILSTM多输入单输出


效果一览

在这里插入图片描述

文章概述

多元回归预测 | Matlab麻雀算法(SSA)优化卷积神经网络-双向长短期记忆网络(CNN-BILSTM)回归预测,SSA-CNN-BILSTM多输入单输出
评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。

部分源码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
restoredefaultpath

%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
f_ = size(P_train, 1);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  参数初始化
pop=10; %种群数量
Max_iter=30; %  设定最大迭代次数
dim = 2;% 维度为2,即优化两个超参数
lb = [1,1];%下边界
ub = [20,20];%上边界
fobj = @(x) fun(x,p_train,t_train);
[Best_pos,Best_score,curve]=PSO(pop,Max_iter,lb,ub,dim,fobj); %开始优化

%%  提取最优参数
n_trees = Best_pos(1);
n_layer = Best_pos(2);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  创建模型
model = regRF_train(p_train, t_train, n_trees, n_layer);


%%  仿真测试
t_sim1 = regRF_predict(p_train, model);
t_sim2 = regRF_predict(p_test , model);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 优化曲线
figure
plot(curve, 'linewidth', 1.5);
title('PSO-RF')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
toc

T_sim1 =T_sim1';
T_sim2 =T_sim2';

%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);

%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%%  训练集绘图
figure
%plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1)
plot(1:M,T_train,'r-*',1:M,T_sim1,'b-o','LineWidth',1.5)
legend('真实值','PSO-RF预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'训练集预测结果对比';['(R^2 =' num2str(R1) ' RMSE= ' num2str(error1) ' MSE= ' num2str(mse1) ' RPD= ' num2str(RPD1) ')' ]};
title(string)
%% 预测集绘图
figure
plot(1:N,T_test,'r-*',1:N,T_sim2,'b-o','LineWidth',1.5)
legend('真实值','PSO-RF预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'测试集预测结果对比';['(R^2 =' num2str(R2) ' RMSE= ' num2str(error2)  ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')']};
title(string)

%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('PSO-RF预测输出误差')
%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,'*r');
xlabel('真实值')
ylabel('预测值')
string = {'训练集效果图';['R^2_c=' num2str(R1)  '  RMSEC=' num2str(error1) ]};
title(string)
hold on ;h=lsline;
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 预测集拟合效果图
figure
plot(T_test,T_sim2,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'测试集效果图';['R^2_p=' num2str(R2)  '  RMSEP=' num2str(error2) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1,T_sim2]';
S=[T_train,T_test]';
figure
plot(S,tsim,'ob');
xlabel('真实值')
ylabel('预测值')
string1 = {'所有样本拟合预测图';['R^2_p=' num2str(R3)  '  RMSEP=' num2str(error3) ]};
title(string1)
hold on ;h=lsline();
set(h,'LineWidth',1,'LineStyle','-','Color',[1 0 1])
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为:       ',num2str(mse2)])
disp(['均方根误差RMSEP为:  ',num2str(error2)])
disp(['决定系数R^2为:  ',num2str(R2)])
disp(['剩余预测残差RPD为:  ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为:  ',num2str(MAPE2)])
grid


参考资料

[1] https://blog.csdn.net/m0_57362105/article/details/130383523?spm=1001.2014.3001.5502

### 回答1: 基于tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)用于回归预测是一种综合利用混沌映射、麻雀算法、离散谱分析和BP神经网络优化算法。下面将介绍其基本原理和优势。 首先,该算法利用tent混沌映射生成一系列随机数作为麻雀算法的搜索初值。麻雀算法是一种模拟麻雀觅食行为的优化算法,通过一系列的觅食和迁徙操作来搜索最优解。在Tent-SSA-BP中,麻雀算法被用来寻找BP神经网络的最优权重和偏置值。 其次,Tent-SSA-BP还利用离散谱分析对待优化的BP神经网络进行频域特征提取。离散谱分析将输入数据转换为频域信号,可以提取数据的周期性和趋势信息,有助于优化算法更准确地找到BP网络的最优解。 最后,Tent-SSA-BP将麻雀算法的搜索结果作为BP神经网络的初始值,通过反向传播算法迭代调整网络的权重和偏置值,以实现回归预测任务。 该算法具有以下优势: 1. 麻雀算法和离散谱分析相结合,可以更全面地搜索优化空间,提高算法的全局搜索能力,避免陷入局部最优解。 2. 利用tent混沌映射生成的随机数作为麻雀算法的初值,增加了搜索过程的随机性,有助于算法的多样性和全局收敛性。 3. 离散谱分析可以提取数据的周期性和趋势信息,提高了优化算法的精度。 4. 通过反向传播算法网络进行迭代优化,可以进一步提高网络的拟合能力。 综上所述,基于tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)是一种有效的回归预测算法,具有良好的全局搜索能力和精度。 ### 回答2: 基于Tent混沌映射改进的麻雀算法(Tent-SSA-BP)主要用于回归预测问题中的优化BP神经网络。BP神经网络是一种常用的机器学习算法,通过反向传播算法来调整网络的权值和阈值,以达到预测目标的目的。 Tent混沌映射是一种非线性动力系统,可用于生成随机数序列。而麻雀算法是一种优化算法,灵感来源于麻雀鸟群的集体行为,在搜索空间中寻找最优解。 Tent-SSA-BP算法将Tent混沌映射与麻雀算法相结合,用于优化BP神经网络的训练过程。具体步骤如下: 首先,根据优化问题的要求,建立BP神经网络模型并初始化权值和阈值。 然后,利用Tent混沌映射生成随机数序列作为麻雀算法的初始位置。 接下来,根据麻雀算法的原理,通过计算每个麻雀的适应度函数值来评估其位置的优劣。适应度函数值可以通过计算实际输出与期望输出之间的差距来衡量。 然后,根据适应度函数值,更新每个麻雀的位置。在更新过程中,可以利用Tent混沌映射生成新的位置。 最后,根据更新后的麻雀位置,调整BP神经网络的权值和阈值,以改善网络的性能和预测准确度。 通过多次迭代,Tent-SSA-BP算法可以逐渐优化BP神经网络,提高回归预测的准确度。 总之,基于Tent混沌映射改进的麻雀算法(Tent-SSA-BP)是一种用于优化BP神经网络回归预测方法。它通过结合Tent混沌映射和麻雀算法,可以改善神经网络的性能,提高回归预测的精度。 ### 回答3: 基于tent混沌映射改进的麻雀算法SSA-优化BP神经网络(Tent-SSA-BP)是一种用于回归预测算法SSA是扩散谱分析(Singular Spectrum Analysis)的缩写,它是一种基于时间序列数据的分析方法。BP神经网络是一种常用的人工神经网络,用于模式识别和回归预测。 Tent混沌映射是一种非线性动力学系统,它的特点是输入值在一定范围内发生不可预测的变化。基于tent混沌映射改进的麻雀算法是一种模拟麻雀觅食行为的优化算法,它的特点是具有较强的全局搜索能力和快速收敛速度。 在Tent-SSA-BP算法中,首先通过SSA分析原始时间序列数据,将其分解为多个成分。然后,利用优化算法SSA-麻雀算法对每个成分进行优化。这样,可以获得每个成分的最优权重和偏置。接下来,将这些最优权重和偏置作为初始化参数,使用BP神经网络进行训练。通过不断迭代,更新权重和偏置,直到达到预定的收敛条件。 相比于传统的BP神经网络,Tent-SSA-BP算法在初始化参数方面更加合理和准确,能够更快地收敛。同时,根据tent混沌映射的特性,Tent-SSA-BP算法能够更好地探索搜索空间,提高了全局搜索能力,有助于找到更优的局部最小值。 总的来说,基于tent混沌映射改进的麻雀算法SSA-优化BP神经网络(Tent-SSA-BP)回归预测是一种综合利用了SSA分解、Tent混沌映射和BP神经网络优化算法。它通过分解分析时间序列数据、优化权重和偏置以及训练神经网络,能够提高预测的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值