多元回归分析 | GWO-KELM、PSO-KELM、BPNN、KLEM、ELM多输入单输出回归预测 可直接运行~Matlab语言

该博客介绍了使用灰狼优化算法(GWO)和粒子群优化(PSO)结合极端学习机(ELM)进行多输入单输出回归预测的方法。文中提供Matlab源码,适用于GWO-KELM、PSO-KELM、BPNN、KLEM和ELM模型。文章包含效果展示、概述及部分源码,适合直接运行。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

文章概述

多元回归分析 | GWO-KELM、PSO-KELM、BPNN、KLEM、ELM多输入单输出回归预测 可直接运行~Matlab语言

灰狼优化算法(GWO)通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的,这一机制在平衡探索和开发方面取得了不错的效果,并且在收敛速度和求解精度上都有良好的性能,具有原理简单、并行性﹑易于实现,需调整的参数少且不需要问题的梯度信息,有较强的全局搜索能力等特点。
直接替换数据即可使用ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值