基于麻雀算法优化卷积神经网络-长短期记忆网络结合注意力机制SSA-CNN-LSTM-Attention分类预测

本文介绍了基于麻雀算法优化的卷积神经网络(CNN)与长短期记忆(LSTM)网络结合注意力机制的SSA-CNN-LSTM-Attention模型,用于分类预测。该模型在MATLAB中实现,能生成分类效果和混淆矩阵图,适用于二分类和多分类任务。提供部分源码,并列出相关参考资料。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

文章概述

基于麻雀算法优化卷积神经网络-长短期记忆网络结合注意力机制SSA-CNN-LSTM-Attention分类预测

直接替换数据即可使用,保证程序可正常运行。
程序语言为matlab,程序可出分类效果图,混淆矩阵图

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,混淆矩阵图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值