车辆路径规划 | 强化学习与车辆路径规划问题(CVRP)

本文探讨了如何使用强化学习开发动态编码器-解码器架构的模型,该模型能学习并设计优化启发式算法,高效解决大规模车辆路径规划问题。经过训练,该模型在解决车辆路径问题上表现优于传统的启发式方法,如Savings Clarke Wright算法,并且能够扩展到处理更复杂的VRP变体。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

近年来,机器学习正在以惊人的速度发展,并且可以自行解决棘手的问题。 最近在组合优化领域的研究工作表明,机器学习有潜力比人类设计的传统启发式方法更好地学习和设计启发式方法。 在该项目中,开发了一种具有动态编码器-解码器架构的强化模型,该模型学习根据数据设计启发式算法,以最优地解决大规模车辆路径问题。 经过训练的模型会立即产生接近最优的解决方案,而无需重新训练模型。 与其他启发式方法(例如在 Google 运营研究工具中实现的 Savings Clarke Wright 算法)相比,这种强化模型的表现优于它们。 该模型可以轻松扩展以解决 VRP 问题的其他变体,例如多仓库和具有时间窗口的 VRP。

在这里插入图片描述

代码

!pip install ortools
     

import tensorflow 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值