近年来,低空物流在城市配送中的重要性日益凸显。无人机技术的发展让“最后一公里”的问题找到了新的解决思路。然而,要让无人机真正成为物流的可靠工具,路径规划依然是一个极具挑战的难题——复杂的禁飞区、动态的天气变化、实时的配送需求波动,这些都对算法提出了更高的要求。
这篇博客带你从技术实现的角度,逐步解剖一个“智慧低空物流路径优化系统”的开发过程:自定义动态环境 + 强化学习(DQN) + 遗传算法 + 可视化,让你的无人机能够在复杂的低空环境中自信飞行!
技术目标
- 自定义动态环境:模拟低空物流中涉及的网格地图、风速风向、禁飞区等动态因素。
- 强化学习优化路径:基于
stable-baselines3
实现 DQN 算法训练智能体,最小化配送时间、能耗和风险。 - 多目标优化:用遗传算法处理多目标的平衡,如时间、能耗和避障需求。
- 数据可视化:用
matplotlib
绘制路径规划结果,动态展示智能体的优化过程。
技术细节逐步拆解
1. 自定义动态环境
无人机飞行的环境是系统的核心部分,借助 OpenAI Gym 接口,我