Flink流处理:温度阈值分流实战

#新星杯·14天创作挑战营·第11期#

package api

import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

/**
 *
 * @PROJECT_NAME: Flink
 * @PACKAGE_NAME: api
 * @author: 赵嘉盟-HONOR
 * @data: 2025-5-15 21:24
 * @DESCRIPTION
 *
 */
object SideOutput {
  def main(args: Array[String]): Unit = {
    val env=StreamExecutionEnvironment.getExecutionEnvironment
    val inputStream=env.socketTextStream("localhost",7777)
    val dataStream=inputStream
      .map( data=>{
        val arr=data.split(",")
        SensorReading(arr(0),arr(1).toLong,arr(2).toDouble)
      })
    val highTempStream=dataStream
      .process( new SplitTempProcessor(30.0))

    highTempStream.print("high")
    highTempStream.getSideOutput(new OutputTag[(String,Long,Double)]("low")).print("low")

    env.execute("side output")
  }

}

//实现自定义ProcessFunction,实现分流
class SplitTempProcessor(threshold:Double)  extends ProcessFunction[SensorReading,SensorReading] {
  override def processElement(i: SensorReading, context: ProcessFunction[SensorReading, SensorReading]#Context, collector: Collector[SensorReading]): Unit = {
    //判断条件
    if (i.temperature > threshold) {
      //主输出
      collector.collect(i)
    } else {
      //侧输出流
      context.output(new OutputTag[(String, Long, Double)]("low"), (i.id, i.timestamp, i.temperature))
    }
  }
}

这段代码是一个基于 Apache Flink 的流处理程序,主要功能是通过 ProcessFunction 实现数据的分流处理,将传感器数据根据温度阈值分为主输出流和侧输出流。


1. 代码结构总结

主要功能模块
  1. 数据源读取
    • 从 Socket 读取数据流(localhost:7777),数据格式为 id,timestamp,temperature
  2. 数据处理
    • 使用 map() 方法将输入数据转换为 SensorReading 对象。
    • 使用自定义的 ProcessFunction 实现数据分流,根据温度阈值将数据分为主输出流和侧输出流。
  3. 数据输出
    • 主输出流(温度高于阈值)直接输出到控制台。
    • 侧输出流(温度低于或等于阈值)通过 OutputTag 输出到控制台。
核心类与方法
  • SensorReading
    • 样例类,用于表示传感器的数据(ID、时间戳、温度)。
  • ProcessFunction
    • Flink 提供的底层处理函数,可以访问时间、状态等底层功能,并支持侧输出流。
  • OutputTag
    • 用于标识侧输出流,通过 context.output() 将数据发送到侧输出流。
  • Collector
    • 用于将数据发送到主输出流。

2. 代码原理拓展

Flink 流处理的核心概念
  1. 数据源(Source)

    代码中从 Socket 读取数据流,Flink 还支持从 Kafka、文件、集合等数据源读取数据。
  2. 数据处理(Transformation)

    ProcessFunction 是 Flink 提供的底层处理函数,可以访问时间、状态等底层功能。通过 processElement() 方法对每条数据进行处理,并根据条件将数据发送到主输出流或侧输出流。
  3. 侧输出流(Side Output)

    侧输出流是 Flink 提供的一种机制,用于将数据分流到多个输出流。通过 OutputTag 标识侧输出流,并通过 context.output() 将数据发送到侧输出流。
  4. 数据输出(Sink)

    代码中使用 print() 方法将数据输出到控制台,Flink 还支持将数据输出到文件、Kafka、数据库等目标。

3. 代码优化与扩展

优化建议
  1. 异常处理

    在数据处理过程中增加异常处理逻辑,避免程序因异常数据而崩溃。
  2. 配置管理

    将温度阈值、Socket 地址等配置提取到外部配置文件(如 application.conf),便于维护。
  3. 并行度设置

    根据数据量和硬件资源,设置合适的并行度,以提高程序性能。
功能扩展
  1. 复杂条件分流

    在 ProcessFunction 中实现更复杂的分流逻辑,例如根据多个字段的组合条件进行分流。
  2. 时间窗口计算

    结合 Flink 的时间窗口功能,对数据进行滑动窗口或滚动窗口计算。
  3. 状态管理

    使用 Flink 的状态管理功能,记录历史数据或统计信息,实现更复杂的业务逻辑。
  4. 数据写入到外部存储

    将主输出流和侧输出流的数据写入到数据库(如 MySQL、HBase)或文件系统(如 HDFS)。

4. 示例代码扩展

以下是一个扩展示例,展示如何将数据写入到文件系统:

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.fs.bucketing.BucketingSink
import org.apache.flink.streaming.connectors.fs.StringWriter

object ExtendedSideOutput {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    // 从 Socket 读取数据流
    val inputStream = env.socketTextStream("localhost", 7777)

    // 转换为 SensorReading 对象
    val dataStream = inputStream.map(data => {
      val arr = data.split(",")
      SensorReading(arr(0), arr(1).toLong, arr(2).toDouble)
    })

    // 自定义 ProcessFunction 实现分流
    val highTempStream = dataStream.process(new SplitTempProcessor(30.0))

    // 主输出流写入到文件系统
    val highTempSink = new BucketingSink[SensorReading]("hdfs://hadoop101:9000/flink/high")
    highTempSink.setWriter(new StringWriter())
    highTempSink.setBatchSize(1024 * 1024 * 100) // 每 100MB 生成一个文件
    highTempStream.addSink(highTempSink)

    // 侧输出流写入到文件系统
    val lowTempSink = new BucketingSink[(String, Long, Double)]("hdfs://hadoop101:9000/flink/low")
    lowTempSink.setWriter(new StringWriter())
    lowTempSink.setBatchSize(1024 * 1024 * 100) // 每 100MB 生成一个文件
    highTempStream.getSideOutput(new OutputTag[(String, Long, Double)]("low")).addSink(lowTempSink)

    env.execute("ExtendedSideOutput")
  }
}

5. 总结

  1. 核心功能
    • 通过 ProcessFunction 实现数据分流,将传感器数据根据温度阈值分为主输出流和侧输出流。
  2. 侧输出流机制
    • 使用 OutputTag 和 context.output() 实现侧输出流,支持多路数据输出。
  3. 优化与扩展
    • 通过异常处理、配置管理、并行度设置等功能优化程序,通过复杂条件分流、时间窗口计算、状态管理等功能扩展程序。

通过理解 Flink 的核心概念和代码原理,可以更好地开发和优化流处理程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渣渣盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值