平面声波——一维Helmhotz波动方程

平面声波的一维Helmholtz波动方程是一种简化的声波传播模型,适用于在一维空间中传播的声波。
声波的基本物理过程---傅里叶变换---Helmholtz方程

一、声波的基本波动方程

在无源、无耗散、均匀介质中的一维声波的波动方程为:

\frac{\partial ^{2}p\left ( x,t \right )}{\partial t^{2}}=c^{2}\frac{\partial ^{2}p\left ( x,t \right )}{\partial x^{2}}

其中:

p\left ( x,t \right )表示位置 x 处和时间 t 时的声压,

c是声波在介质中的传播速度,

\frac{\partial ^{2}p\left ( x,t \right )}{\partial t^{2}}表示声压对时间的二阶导数(即声压随时间的加速度),

\frac{\partial ^{2}p\left ( x,t \right )}{\partial x^{2}}表示声压对空间坐标的二阶导数(即声压随空间的变化率)。

 二、Helmholtz方程的推导

为了将波动方程简化为Helmholtz方程,需假设声压随时间的变化具有简谐性质,即声波是单一频率的正弦波。即:

p\left ( x,t \right )=P(x)e^{-iwt}

其中:

 P(x)是只随空间位置 x 变化的函数,

w是声波的角频率,

e^{-iwt}描述了声波的时间依赖部分,表示一个简谐振荡的形式。

将假设带入波动方程中,时间的二阶导数为:

\frac{\partial ^{2}p\left ( x,t \right )}{\partial t^{2}}=\frac{\partial ^{2}}{\partial t^{2}}\left [ P(x)e^{-iwt}\right ]=-w^{2}P(x)e^{-iwt}

代入波动方程:

-w^{2}P(x)e^{-iwt}=c^{2}\frac{\partial ^{2}P(x)}{\partial x^{2}}e^{-iwt}

由于时间部分e^{-iwt}是相同的,因此可以得到仅随空间 x 变化的方程:

\frac{\partial ^{2}P(x)}{\partial x^{2}}+\frac{w^{2}}{c^{2}}P(x)=0 

三、一维Helmholtz波动方程

最终得到的方程称为一维Helmholtz波动方程,形式为:

\frac{\partial ^{2}P(x)}{\partial x^{2}}+k^{2}P(x)=0 

其中:

P(x)是空间中的声压分布,

k=\frac{w}{c}是波数,代表声波在空间中的传播特性。 

四、 Helmholtz波动方程的解

一维Helmholtz方程的通解为:

P(x)=Ae^{ikx}+Be^{-ikx}

其中:

AB是待定的常数,代表沿正向传播和沿反向传播的波,

e^{ikx}e^{-ikx}分别代表波向正 x 方向和负 x 方向传播。 

这种解形式表示声波可以在介质中沿不同方向传播,具体形式取决于边界条件(如吸声材料的反射特性等)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值