题目链接:P1548 [NOIP1997 普及组] 棋盘问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目描述
设有一个N × M 方格的棋盘(1 ≤ N ≤ 100 ,1 ≤ M ≤ 100)
求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。
例如:当 N=2, M=3 时:
正方形的个数有 8 个:即边长为 1 的正方形有 6 个;
边长为 2 的正方形有 2 个。
长方形的个数有 10 个:
即
2 × 1 的长方形有 4 个:
1 × 2 的长方形有 3 个:
3 × 1 的长方形有 2 个:
3 × 2 的长方形有 1 个:
如上例:输入:2,3
输出:8,10
输入格式
N,M
输出格式
正方形的个数与长方形的个数
样例 #1
样例输入 #1
2 3
样例输出 #1
8 10
提示
【题目来源】
NOIP 1997 普及组第一题
AC code:(暴力解法)
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n,m;
cin>>n>>m;
int cnt1=0;
int cnt2=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
// (i,j) -> (k,p)
for(int k=i;k<=n;k++)
{
for(int p=j;p<=m;p++)
{
if((k-i)==(p-j))
cnt1++; // 正方形个数
else
cnt2++; // 长方形个数
}
}
}
}
cout<<cnt1<<" "<<cnt2<<endl;
return 0;
}