洛谷 P1548 [NOIP1997 普及组] 棋盘问题

本文介绍了NOIP1997普及组竞赛中的一道棋盘问题,涉及计算棋盘上的正方形和长方形数量。通过一个样例输入输出展示了问题的具体情况,并给出了暴力求解的AC代码实现。该问题锻炼了参赛者的二维数组遍历和几何形状计数能力。
摘要由CSDN通过智能技术生成

题目链接:P1548 [NOIP1997 普及组] 棋盘问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目描述

设有一个N × M 方格的棋盘(1 ≤ N ≤ 100 ,1 ≤ M ≤ 100)

求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)

例如:当 N=2, M=3 时:

正方形的个数有 8 个:即边长为 1 的正方形有 6 个;

边长为 2 的正方形有 2 个。

长方形的个数有 10 个:

即  

2 × 1 的长方形有 4 个:

 1 × 2 的长方形有 3 个:

3 × 1 的长方形有 2 个:

3 × 2 的长方形有 1 个:

如上例:输入:2,3

输出:8,10

输入格式

N,M

输出格式

正方形的个数与长方形的个数

样例 #1

样例输入 #1

2 3

样例输出 #1

8 10

提示

【题目来源】

NOIP 1997 普及组第一题

AC code:(暴力解法)

#include<iostream>
#include<algorithm>

using namespace std;

int main()
{
	int n,m;
	cin>>n>>m;
	
	int cnt1=0;
	int cnt2=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++) 
		{
		//	(i,j) -> (k,p)
			for(int k=i;k<=n;k++)
			{
				for(int p=j;p<=m;p++)
				{
					if((k-i)==(p-j))
						cnt1++; // 正方形个数
					else
						cnt2++; // 长方形个数
				}
			}
		}
	}
	cout<<cnt1<<" "<<cnt2<<endl;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值