【图像识别】基于卷积神经网络CNN实现车牌识别matlab源码

 过去几年,深度学习(Deep learning)在解决诸如视觉识别(visual recognition)、语音识别(speech recognition)和自然语言处理(natural language processing)等很多问题方面都表现出非常好的性能。在不同类型的深度神经网络当中,卷积神经网络是得到最深入研究的。早期由于缺乏训练数据和计算能力,要在不产生过拟合(overfitting)的情况下训练高性能卷积神经网络是很困难的。标记数据和近来GPU的发展,使得卷积神经网络研究涌现并取得一流结果。本文中,我们将纵览卷积神经网络近来发展,同时介绍卷积神经网络在视觉识别方面的一些应用。

CNN快速发展,得益于LeNet-5、Alexnet、ZFNet、VGGNet、GoogleNet、ResNet等不同结构的设计出现。

1.CNN的基本结构

卷积神经网络的结构有很多种,但是其基本架构是相似的,拿LeNet-5为例来介绍,如下图,它包含三个主要的层——卷积层( convolutional layer)、池化层( pooling layer)、全连接层( fully-connected layer)

   图中的卷积网络工作流程如下,输入层由32×32个感知节点组成,接收原始图像。然后,计算流程在卷积和子抽样之间交替进行,如下所述:

    第一隐藏层进行卷积,它由6个特征映射组成,每个特征映射由28×28个神经元组成,每个神经元指定一个 5×5 的接受域;

    第二隐藏层实现子抽样和局部平均,它同样由 6 个特征映射组成,但其每个特征映射由14×14 个神经元组成。每个神经元具有一个 2×2 的接受域,一个可训练系数,一个可训练偏置和一个 sigmoid 激活函数。可训练系数和偏置控制神经元的操作点。

    第三隐藏层进行第二次卷积,它由 16个特征映射组 成,每个特征映射由 10×10 个神经元组成。该隐藏层中的每个神经元可能具有和下一个隐藏层几个特征映射相连的突触连接,它以与第一个卷积 层相似的方式操作。

    第四个隐藏层进行第二次子抽样和局部平均计算。它由 16 个特征映射组成,但每个特征映射由 5×5 个神经元组成,它以 与第一次抽样相似的方式操作。

    第五个隐藏层实现卷积的最后阶段,它由 120 个神经元组成,每个神经元指定一个 5×5 的接受域。

    最后是个全连接层,得到输出向量。

    相继的计算层在卷积和抽样之间的连续交替,我们得到一个“双尖塔”的效果,也就是在每个卷积或抽样层,随着空 间分辨率下降,与相应的前一层相比特征映射的数量增加。卷积之后进行子抽样的思想是受到动物视觉系统中的“简单的”细胞后面跟着“复杂的”细胞的想法的启发而产生的。

其中,卷积层,用来学习输入数据的特征表征。卷积层由很多的卷积核(convolutional kernel)组成,卷积核用来计算不同的feature map;

激励函数(activation function)给CNN卷积神经网络引入了非线性,常用的有sigmoid 、tanh、 ReLU函数;

池化层降低卷积层输出的特征向量,同时改善结果(使结构不容易出现过拟合),典型应用有average pooling 和 max pooling;

全连接层将卷积层和Pooling 层堆叠起来以后,就能够形成一层或多层全连接层,这样就能够实现高阶的推力能力

2.CNN卷积神经网络的改进策略

  自从2012年AlexNet 取得成功以后,科研工作者提出了很多改进CNN的方法,基本都是从以下六个方面入手:convolutional layer、pooling layer、activation function、loss function、regularization 、optimization

2.1convolutional layer

1). Network in network

It replaces the linear filter of the convolutional layer by a micro network

2). Inception module : 是继承了NIN的扩展. 使用不同size的filter来捕获不同size的visual patterns.

2.2 pooling layer

池化层是CNN的重要组成部分,它通过减少卷积层之间的连接数量来降低计算的复杂度。

1).Lp pooling:Lp 池化是建立在复杂细胞运行机制的基础上,受生物启发而来

2). Mixed pooling:combination of max pooling and average pooling

3).Stochastic pooling:Stochastic pooling 是受 droptout 启发而来的方法

4).Spectral pooling

5). Spatial pyramid pooling

空间金字塔池化可以把任何尺度的图像的卷积特征转化成相同维度,这不仅可以让CNN处理任意尺度的图像,还能避免 cropping和warping操作,导致一些信息的丢失,具有非常重要的意义。

一般的CNN都需要输入图像的大小是固定的,这是因为全连接层的输入需要固定输入维度,但在卷积操作是没有对图像尺度有限制,所有作者提出了空间金字塔池化,先让图像进行卷积操作,然后转化成维度的特征输入到全连接层,这个可以把CNN扩展到任意大小的图像。

2.3activation function

一个合适的激励函数可以有效地提高CNN的运算性能。常用的非线性激活函数有sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于全链接层,后者relu常见于卷积层。

sigmoid函数图像曾在神经网络和深度学习(一)中介绍过,这里再介绍ReLU、LReLU、PReLU、RReLU、ELU几种激励函数的特性曲线

2.4 Loss function

1). Softmax loss :

2). Hinge loss : to train large margin classifiers such as SVM

3). Contrastive loss : to train Siamese network

2.5 Regularization 正则化

通过正则化可以有效的减小CNN的过拟合问题。这里介绍两种正则化技术——Dropout 、 DropConnect

Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已) ; 而DropConnect 是DropOut的进一步发展,不再和DropOut一样随意设置输出神经元的值为0,而是随机设置权重矩阵W 为0。

2.6 Optimization

这里介绍几种优化CNN的关键技术:

1). Weights initialization

2). Stochastic gradient descent

3). Batch Normalization

4). Shortcut connections

3. 加速CNN计算速度

3.1 FFT : 使用快速傅里叶变换,可以重复利用一些单元,比如输出梯度的傅里叶变换

3.2 Matrix Factorization : 矩阵因子分解,可以减小计算量,来加速CNN 的训练

3.3 Vector quantization : 矢量量化(VQ)是用来压缩密集的连接层,使得CNN模型变得更小

4. CNN 的主要应用

使用CNN,可以使得以下几个应用达到最佳的(state-of-the-art)性能:

1). Image Classification

2). Object Tracking

3). Pose Estimation

4). Text Detection

5). Visual Saliency detection

6). Action Recognition

7). Scene Labeling

function varargout = System_Main(varargin)

gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @System_Main_OpeningFcn, ...
                   'gui_OutputFcn',  @System_Main_OutputFcn, ...
                    'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
    
end


function System_Main_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
movegui(hObject,'center');




function varargout = System_Main_OutputFcn(hObject, eventdata, handles) 

varargout{1} = handles.output;



%打开图片菜单
function OpenPicture_Callback(hObject, eventdata, handles)
[pathname filename]=uigetfile('.jpg','选择图片');
chepailujing=[pathname filename];
handles.chepailujing=chepailujing;
fpath=[filename pathname];
axes(handles.axes1);
im = imread(fpath);
%im=imresize(im,[240,320])
imshow(im);
title('原图像', 'FontWeight', 'Bold');
handles.IM=im;
guidata(hObject, handles);
fpath;
%保存图片菜单
function SavePicture_Callback(hObject, eventdata, handles)





% --- 车牌定位实现按钮
function CarDiwei_Callback(hObject, eventdata, handles)
[PY2,PY1,PX2,PX1]=caitu_fenge(handles.IM);%分割方法
axes(handles.axes1); hold on;
row = [PY1 PY2];
col = [PX1 PX2];
plot([col(1) col(2)], [row(1) row(1)], 'g-', 'LineWidth', 3);
plot([col(1) col(2)], [row(2) row(2)], 'g-', 'LineWidth', 3);
plot([col(1) col(1)], [row(1) row(2)], 'g-', 'LineWidth', 3);
plot([col(2) col(2)], [row(1) row(2)], 'g-', 'LineWidth', 3);
hold off;
I_bai=handles.IM;
[PY2,PY1,PX2,PX1,threshold]=SEC_xiuzheng(PY2,PY1,PX2,PX1);%选着车牌位置
handles.threshold=threshold;
Plate=I_bai(PY1:PY2,PX1:PX2,:);
bw=Plate;
handles.bw=bw;
guidata(hObject,handles);
axes(handles.axes2);
imshow(bw);
title('车牌图像');



% --- Executes on button press in CarXuanzhuan.
function CarXuanzhuan_Callback(hObject, eventdata, handles)
bw=rgb2gray(handles.bw);

qingxiejiao=rando_bianhuan(bw);
handles.qingxiejiao=qingxiejiao;
bw=imrotate(bw,qingxiejiao,'bilinear','crop');
axes(handles.axes3);
imshow(bw);
title('车牌调整角度图像');
bw=im2bw(bw,graythresh(bw));%figure,imshow(bw);
bw=bwmorph(bw,'hbreak',inf);%figure,imshow(bw);
bw=bwmorph(bw,'spur',inf);%figure,imshow(bw);title('擦除之前');
bw=bwmorph(bw,'open',5);%figure,imshow(bw);title('闭合运算');
handles.bw=bw;
guidata(hObject,handles);


% --- Executes on button press in EditBlue.
function EditBlue_Callback(hObject, eventdata, handles)
bw = bwareaopen(handles.bw, handles.threshold);
bw=~bw;
bw=touying(bw);%Y方向处理
bw=~bw;%擦除反色
bw = bwareaopen(bw, handles.threshold);
bw=~bw;%二次擦除
handles.bw=bw;
guidata(hObject,handles);
axes(handles.axes4);
imshow(bw);
title('擦除多余蓝色');


% --- Executes on button press in EditCar.
function EditCar_Callback(hObject, eventdata, handles)
bw=handles.bw;
[y,x]=size(bw);%对长宽重新赋值
%=================文字分割=================================
fenge=shuzifenge(bw,handles.qingxiejiao)
[m,k]=size(fenge);
%=================显示分割图像结果========================= 
figure;
for s=1:2:k-1
    subplot(1,k/2,(s+1)/2);imshow(bw( 1:y,fenge(s):fenge(s+1)));
end



function CarShibie_Callback(hObject, eventdata, handles)
bw=handles.bw;
[y,x]=size(bw);
fenge=shuzifenge(bw,handles.qingxiejiao)
[m,k]=size(fenge);
%================ 给七张图片定位===============桂AV6388
han_zi  =bw( 1:y,fenge(1):fenge(2));
zi_mu   =bw( 1:y,fenge(3):fenge(4));
zm_sz_1 =bw( 1:y,fenge(5):fenge(6));
zm_sz_2 =bw( 1:y,fenge(7):fenge(8));  
shuzi_1 =bw( 1:y,fenge(9):fenge(10)); 
shuzi_2 =bw( 1:y,fenge(11):fenge(12)); 
shuzi_3 =bw( 1:y,fenge(13):fenge(14)); 
%==========================识别====================================
%======================把修正数据读入==============================
xiuzhenghanzi =   imresize(han_zi, [110 55],'bilinear');
xiuzhengzimu  =   imresize(zi_mu,  [110 55],'bilinear');
xiuzhengzm_sz_1=  imresize(zm_sz_1,[110 55],'bilinear');
xiuzhengzm_sz_2 = imresize(zm_sz_2,[110 55],'bilinear');
xiuzhengshuzi_1 = imresize(shuzi_1,[110 55],'bilinear');
xiuzhengshuzi_2 = imresize(shuzi_2,[110 55],'bilinear');
xiuzhengshuzi_3 = imresize(shuzi_3,[110 55],'bilinear');
%============ 把0-9 , A-Z以及省份简称的数据存储方便访问====================
hanzishengfen=duquhanzi(imread('picture/cpgui.bmp'),imread('picture/cpguizhou.bmp'),imread('picture/cpjing.bmp'),imread('picture/cpsu.bmp'),imread('picture/cpyue.bmp'));
%因数字和字母比例不同。这里要修改
shuzizimu=duquszzm(imread('picture/0.bmp'),imread('picture/1.bmp'),imread('picture/2.bmp'),imread('picture/3.bmp'),imread('picture/4.bmp'),...
                   imread('picture/5.bmp'),imread('picture/6.bmp'),imread('picture/7.bmp'),imread('picture/8.bmp'),imread('picture/9.bmp'),...
                   imread('picture/10.bmp'),imread('picture/11.bmp'),imread('picture/12.bmp'),imread('picture/13.bmp'),imread('picture/14.bmp'),...
                   imread('picture/15.bmp'),imread('picture/16.bmp'),imread('picture/17.bmp'),imread('picture/18.bmp'),imread('picture/19.bmp'),...
                   imread('picture/20.bmp'),imread('picture/21.bmp'),imread('picture/22.bmp'),imread('picture/23.bmp'),imread('picture/24.bmp'),...
                   imread('picture/25.bmp'),imread('picture/26.bmp'),imread('picture/27.bmp'),imread('picture/28.bmp'),imread('picture/29.bmp'),...
                   imread('picture/30.bmp'),imread('picture/31.bmp'),imread('picture/32.bmp'),imread('picture/33.bmp'));
zimu  = duquzimu(imread('picture/10.bmp'),imread('picture/11.bmp'),imread('picture/12.bmp'),imread('picture/13.bmp'),imread('picture/14.bmp'),...
                 imread('picture/15.bmp'),imread('picture/16.bmp'),imread('picture/17.bmp'),imread('picture/18.bmp'),imread('picture/19.bmp'),...
                 imread('picture/20.bmp'),imread('picture/21.bmp'),imread('picture/22.bmp'),imread('picture/23.bmp'),imread('picture/24.bmp'),...
                 imread('picture/25.bmp'),imread('picture/26.bmp'),imread('picture/27.bmp'),imread('picture/28.bmp'),imread('picture/29.bmp'),...
                 imread('picture/30.bmp'),imread('picture/31.bmp'),imread('picture/32.bmp'),imread('picture/33.bmp'));
shuzi = duqushuzi(imread('picture/0.bmp'),imread('picture/1.bmp'),imread('picture/2.bmp'),imread('picture/3.bmp'),imread('picture/4.bmp'),...
                 imread('picture/5.bmp'),imread('picture/6.bmp'),imread('picture/7.bmp'),imread('picture/8.bmp'),imread('picture/9.bmp')); 
%============================识别结果================================  
i=1;%shibiezm_sz该函数识别数字有问题
jieguohanzi  = shibiehanzi(hanzishengfen,xiuzhenghanzi);shibiejieguo(1,i) =jieguohanzi;  i=i+1;
jieguozimu   = shibiezimu(zimu,xiuzhengzimu);           shibiejieguo(1,i) =jieguozimu;   i=i+1;
jieguozm_sz_1= shibiezm_sz(shuzizimu,xiuzhengzm_sz_1);  shibiejieguo(1,i) =jieguozm_sz_1;i=i+1;
jieguozm_sz_2= shibiezm_sz(shuzizimu,xiuzhengzm_sz_2);  shibiejieguo(1,i) =jieguozm_sz_2;i=i+1;
jieguoshuzi_1= shibieshuzi(shuzi,xiuzhengshuzi_1);      shibiejieguo(1,i) =jieguoshuzi_1;i=i+1;
jieguoshuzi_2= shibieshuzi(shuzi,xiuzhengshuzi_2);      shibiejieguo(1,i) =jieguoshuzi_2;i=i+1;
jieguoshuzi_3= shibieshuzi(shuzi,xiuzhengshuzi_3);      shibiejieguo(1,i) =jieguoshuzi_3;i=i+1;
%==========================对话框显示显示=============================================
set(handles.Result,'String', shibiejieguo);
handles.shibiejieguo=shibiejieguo;
guidata(hObject,handles);

% --- Executes on button press in CarVoide.
function CarVoide_Callback(hObject, eventdata, handles)
duchushengyin(handles.shibiejieguo);


% --- Executes on button press in CNNbut.
function CNNbut_Callback(hObject, eventdata, handles)

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

智能优化算法 神经网络预测 雷达通信  无线传感器 电力系统

信号处理 图像处理 路径规划 元胞自动机 无人机 

物理应用  机器学习

🎁 私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
车牌识别是计算机视觉领域非常重要的应用之一,通过使用卷积神经网络CNN),可以实现对车牌的自动识别。使用MATLAB这一强大的编程工具,我们可以简单而高效地实现这个功能。 首先,我们需要准备一个车牌数据集,包含了各种类型的车牌图片。这个数据集应该包含大量的正样本(有车牌)和负样本(无车牌)。 接下来,我们需要使用MATLAB加载并预处理这些图片数据。预处理步骤可能包括图像增强、裁剪和调整大小等操作。这样做有助于提高模型的准确性。 在加载和处理图像数据之后,我们可以设计并构建一个CNN网络。CNN网络由多个卷积层、池化层和全连接层组成。卷积层可以有效地提取图像特征,池化层可以降低图像的维度,而全连接层可以进行最终的分类。 当我们建立好CNN网络结构后,我们可以使用MATLAB中的训练函数来训练我们的模型。具体来说,我们可以使用反向传播算法来调整网络参数,并反复迭代直到模型收敛。 训练完成后,我们可以使用训练得到的模型来进行车牌识别。对于输入的一个车牌图像,我们将其输入到CNN网络中,并由网络输出一个结果。该结果可以是车牌的类型或一个二分类结果(有/无车牌)。 最后,我们可以使用MATLAB的图像处理和识别函数来显示和验证车牌识别结果。这些函数可以帮助我们可视化和评估模型的性能,例如生成混淆矩阵和计算准确率。 总之,通过使用MATLAB卷积神经网络CNN),我们可以实现车牌识别的功能。这种方法不仅可以提高准确性,还可以实现自动化和高效率的车牌识别
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值