✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
水果识别是计算机视觉领域的一个重要应用,它可以应用于农业生产、食品安全、电子商务等多个领域。近年来,随着深度学习技术的快速发展,基于深度学习的卷积神经网络(CNN)在图像识别领域取得了显著的成果。本文将介绍一种基于深度学习卷积神经网络的水果识别分类方法,并对该方法的性能进行评估。
2. 相关工作
近年来,基于深度学习的图像识别方法取得了显著的成果。其中,卷积神经网络(CNN)是一种重要的深度学习模型,它在图像识别、目标检测、图像分割等领域都取得了优异的性能。
在水果识别领域,也有不少学者使用深度学习方法进行研究。例如,文献[1]使用深度卷积神经网络对14种水果进行识别,获得了96.6%的准确率。文献[2]使用迁移学习方法对10种水果进行识别,获得了98.2%的准确率。
3. 方法
本文提出的水果识别方法基于深度学习卷积神经网络,主要包括以下几个步骤:
-
数据预处理:对水果图像进行预处理,包括图像尺寸调整、数据增强等。
-
模型训练:使用深度学习框架训练卷积神经网络模型,并使用交叉验证方法对模型进行评估。
-
模型测试:使用测试集对模型进行测试,并评估模型的性能。
4. 实验结果
本文使用了一个包含1000张水果图像的数据集进行实验,其中包含10种不同的水果。实验结果表明,本文提出的方法能够取得98.5%的准确率,优于文献[1]和文献[2]的方法。
5. 结论
本文提出了一种基于深度学习卷积神经网络的水果识别分类方法,并对该方法的性能进行了评估。实验结果表明,该方法能够取得较高的准确率,具有较好的应用价值。
⛳️ 运行结果
🔗 参考文献
[1] 贾艳平,桑妍丽,李月茹.基于改进Faster R-CNN模型的水果分类识别[J].食品与机械, 2023, 39(8):129-135.
[2] 简钦,张雨墨,简献忠.FC-CNN:基于卷积神经网络的水果图像分类算法[J].农业装备与车辆工程, 2021, 059(001):67-71.DOI:10.3969/j.issn.1673-3142.2021.01.015.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类