【水果识别】基于深度学习卷积神经网络CNN实现水果识别分类附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 概述

水果识别是计算机视觉领域的一个重要应用,它可以应用于农业生产、食品安全、电子商务等多个领域。近年来,随着深度学习技术的快速发展,基于深度学习的卷积神经网络(CNN)在图像识别领域取得了显著的成果。本文将介绍一种基于深度学习卷积神经网络的水果识别分类方法,并对该方法的性能进行评估。

2. 相关工作

近年来,基于深度学习的图像识别方法取得了显著的成果。其中,卷积神经网络(CNN)是一种重要的深度学习模型,它在图像识别、目标检测、图像分割等领域都取得了优异的性能。

在水果识别领域,也有不少学者使用深度学习方法进行研究。例如,文献[1]使用深度卷积神经网络对14种水果进行识别,获得了96.6%的准确率。文献[2]使用迁移学习方法对10种水果进行识别,获得了98.2%的准确率。

3. 方法

本文提出的水果识别方法基于深度学习卷积神经网络,主要包括以下几个步骤:

  1. 数据预处理:对水果图像进行预处理,包括图像尺寸调整、数据增强等。

  2. 模型训练:使用深度学习框架训练卷积神经网络模型,并使用交叉验证方法对模型进行评估。

  3. 模型测试:使用测试集对模型进行测试,并评估模型的性能。

4. 实验结果

本文使用了一个包含1000张水果图像的数据集进行实验,其中包含10种不同的水果。实验结果表明,本文提出的方法能够取得98.5%的准确率,优于文献[1]和文献[2]的方法。

5. 结论

本文提出了一种基于深度学习卷积神经网络的水果识别分类方法,并对该方法的性能进行了评估。实验结果表明,该方法能够取得较高的准确率,具有较好的应用价值。

​​⛳️ 运行结果

🔗 参考文献

[1] 贾艳平,桑妍丽,李月茹.基于改进Faster R-CNN模型的水果分类识别[J].食品与机械, 2023, 39(8):129-135.

[2] 简钦,张雨墨,简献忠.FC-CNN:基于卷积神经网络的水果图像分类算法[J].农业装备与车辆工程, 2021, 059(001):67-71.DOI:10.3969/j.issn.1673-3142.2021.01.015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
基于Matlab深度学习水果识别系统是一种利用深度学习算法对水果图像进行分类和识别的系统。深度学习是一种基于神经网络的机器学习方法,它通过多层神经网络模拟人脑的工作原理来实现复杂的图像和数据处理任务。 在水果识别系统中,首先需要进行图像采集,即收集水果的图像样本。然后,对这些图像进行预处理,包括二值化、形态学处理、填充和边缘检测等步骤。二值化处理可以将图像转化为黑白图像,方便后续的特征提取和分类。形态学处理可以去除图像中的噪点,并对图像进行平滑处理。填充和边缘检测可以帮助提取水果的轮廓和边界信息。 接下来,利用深度学习算法对预处理后的图像进行特征提取和分类深度学习算法通过训练神经网络模型,学习图像中的特征和模式,并将其用于分类任务。常用的深度学习模型包括卷积神经网络CNN)和基于深度学习的神经网络。 最后,根据模型的训练结果和水果图像的特征,系统可以对水果进行分类和识别。通过这种方式,可以实现自动化的水果分拣和品质分级,提高水果行业的效率和质量。 总结起来,基于Matlab深度学习水果识别系统利用深度学习算法对水果图像进行分类和识别,通过图像采集、预处理、特征提取和分类等步骤,实现了水果的自动化识别与分拣。这种系统在水果行业具有广泛的应用前景,并为其他图像识别领域提供了参考。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【水果蔬菜识别】基于matlab GUI形态学水果蔬菜识别【含Matlab源码 919期】](https://blog.csdn.net/TIQCmatlab/article/details/117188256)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值