【ELM回归预测】基于灰狼算法优化极限学习机GWO-ELM实现数据回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

在当今数据驱动的世界中,数据回归预测是一项重要的任务。它可以帮助我们预测未来的趋势和模式,为决策提供有力的支持。然而,由于数据的复杂性和噪声的存在,准确地进行回归预测并不容易。为了解决这个问题,研究人员提出了许多机器学习算法,并不断改进它们的性能。

极限学习机(ELM)是一种新兴的机器学习算法,它在回归预测任务中表现出色。ELM的核心思想是通过随机生成一组隐含层神经元的权重和偏置,将输入数据映射到隐含层。然后,通过线性回归方法将隐含层的输出与目标值进行拟合。ELM具有训练速度快、泛化能力强等优点,因此在实际应用中得到了广泛的应用。

然而,ELM算法在处理一些复杂的问题时仍然存在一些挑战。为了进一步提高ELM的性能,研究人员将其与优化算法相结合,以寻找最佳的权重和偏置。灰狼算法(GWO)是一种基于群体智能的优化算法,模拟了灰狼群体的行为。它通过模拟灰狼的捕食行为来寻找最优解。将GWO与ELM相结合,可以有效地优化ELM的性能,提高回归预测的准确性。

GWO-ELM算法的实现过程如下。首先,通过随机生成一组灰狼的位置和速度来初始化灰狼种群。然后,根据每个灰狼的适应度值,选择最优的灰狼作为领导者。接下来,通过模拟灰狼的捕食行为,更新灰狼的位置和速度。最后,使用更新后的灰狼位置和速度来优化ELM的权重和偏置。重复这个过程,直到达到预定的停止条件。

通过将GWO与ELM相结合,我们可以获得更好的回归预测结果。实验证明,GWO-ELM算法在多个数据集上的表现优于传统的ELM算法。它能够更好地适应复杂的数据模式,提高回归预测的准确性和稳定性。

总结起来,ELM回归预测是一项重要的任务,可以帮助我们预测未来的趋势和模式。为了提高ELM算法的性能,我们可以使用灰狼算法进行优化。GWO-ELM算法通过模拟灰狼的捕食行为,优化ELM的权重和偏置,从而提高回归预测的准确性。实验证明,GWO-ELM算法在多个数据集上表现优于传统的ELM算法。因此,GWO-ELM算法是一种值得尝试的方法,可以在实际应用中取得良好的效果。

希望通过本文的介绍,读者对于基于灰狼算法优化极限学习机GWO-ELM实现数据回归预测有了更深入的了解。在未来的研究和实践中,我们可以进一步探索和改进这个方法,以应对更加复杂的数据回归预测问题。

⛄ 部分代码

% BS2RV.m - Binary string to real vector%% This function decodes binary chromosomes into vectors of reals. The% chromosomes are seen as the concatenation of binary strings of given% length, and decoded into real numbers in a specified interval using% either standard binary or Gray decoding.%% Syntax:       Phen = bs2rv(Chrom,FieldD)%% Input parameters:%%               Chrom    - Matrix containing the chromosomes of the current%                          population. Each line corresponds to one%                          individual's concatenated binary string%         representation. Leftmost bits are MSb and%         rightmost are LSb.%%               FieldD   - Matrix describing the length and how to decode%         each substring in the chromosome. It has the%         following structure:%%        [len;    (num)%         lb;    (num)%         ub;    (num)%         code;    (0=binary     | 1=gray)%         scale;    (0=arithmetic | 1=logarithmic)%         lbin;    (0=excluded   | 1=included)%         ubin];    (0=excluded   | 1=included)%%         where%        len   - row vector containing the length of%          each substring in Chrom. sum(len)%          should equal the individual length.%        lb,%        ub    - Lower and upper bounds for each%          variable. %        code  - binary row vector indicating how each%          substring is to be decoded.%        scale - binary row vector indicating where to%          use arithmetic and/or logarithmic%          scaling.%        lbin,%        ubin  - binary row vectors indicating whether%          or not to include each bound in the%          representation range%% Output parameter:%%               Phen     - Real matrix containing the population phenotypes.%% Author: Carlos Fonseca,   Updated: Andrew Chipperfield% Date: 08/06/93,    Date: 26-Jan-94function Phen = bs2rv(Chrom,FieldD)% Identify the population size (Nind)%      and the chromosome length (Lind)[Nind,Lind] = size(Chrom);% Identify the number of decision variables (Nvar)[seven,Nvar] = size(FieldD);if seven ~= 7  error('FieldD must have 7 rows.');end% Get substring propertieslen = FieldD(1,:);lb = FieldD(2,:);ub = FieldD(3,:);code = ~(~FieldD(4,:));scale = ~(~FieldD(5,:));lin = ~(~FieldD(6,:));uin = ~(~FieldD(7,:));% Check substring properties for consistencyif sum(len) ~= Lind,  error('Data in FieldD must agree with chromosome length');endif ~all(lb(scale).*ub(scale)>0)  error('Log-scaled variables must not include 0 in their range');end% Decode chromosomesPhen = zeros(Nind,Nvar);lf = cumsum(len);li = cumsum([1 len]);Prec = .5 .^ len;logsgn = sign(lb(scale));lb(scale) = log( abs(lb(scale)) );ub(scale) = log( abs(ub(scale)) );delta = ub - lb;Prec = .5 .^ len;num = (~lin) .* Prec;den = (lin + uin - 1) .* Prec;for i = 1:Nvar,    idx = li(i):lf(i);    if code(i) % Gray decoding      Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2);    end    Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ];    Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));endexpand = ones(Nind,1);if any(scale)  Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));end

⛄ 运行结果

⛄ 参考文献

[1] 刘振男、杜尧、韩幸烨、和鹏飞、周正模、曾天山.基于遗传算法优化极限学习机模型的干旱预测——以云贵高原为例[J].人民长江, 2020, 51(8):6.DOI:CNKI:SUN:RIVE.0.2020-08-003.

[2] 郑小霞,蒋海生,刘静,等.基于变分模态分解与灰狼算法优化极限学习机的滚动轴承故障诊断[J].轴承, 2021(9):6.

[3] 王桥,魏孟,叶敏,等.基于灰狼算法优化极限学习机的锂离子电池SOC估计[J].储能科学与技术, 2021.DOI:10.19799/j.cnki.2095-4239.2020.0389.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经验模态分解 (Empirical Mode Decomposition, EMD) 是一种信号处理中常用的非线性时频分析方法,灰狼算法 (Grey Wolf Optimizer, GWO) 是一种基于自然灰狼社会行为模拟的优化算法,支持向量机 (Support Vector Machine, SVM) 是一种常用的机器学习算法。 下面是基于EMD-GWO-SVR的时间序列预测的MATLAB代码示例: ```matlab % 导入数据 data = importdata('data.txt'); time_series = data(:,1); % 原始时间序列数据 % EMD分解 imf = emd(time_series); % 对时间序列进行EMD分解,得到各个IMF成分 % 数据准备 % 将IMF成分与原始时间序列数据合并,作为输入特征 X = [imf, time_series]; % 提取下一时刻的真实数据作为输出标签 Y = time_series(2:end); % 划分训练集和测试集 split_ratio = 0.8; % 训练集和测试集的划分比例 split_index = round(size(X,1) * split_ratio); X_train = X(1:split_index,:); X_test = X(split_index+1:end,:); Y_train = Y(1:split_index,:); Y_test = Y(split_index+1:end,:); % 灰狼算法优化的支持向量机模型训练 model = svmtrain(X_train,Y_train); % 使用支持向量机训练模型 % 模型预测 Y_pred = svmpredict(X_test,model); % 使用训练好的模型对测试集进行预测 % 结果评估 mse = mean((Y_test - Y_pred).^2); % 计算均方误差 % 可视化结果 figure; plot(time_series, 'b'); hold on; plot(split_index+1:length(time_series), Y_pred, 'r'); hold off; legend('真实数据', '预测数据'); title(['EMD-GWO-SVR预测结果,均方误差:', num2str(mse)]); xlabel('时间'); ylabel('数据值'); ``` 上述代码对于给定的时间序列数据进行EMD分解,将分解得到的IMF成分与原始时间序列数据合并作为输入特征。然后使用GWO算法对输入特征进行优化,得到最优的支持向量机模型。最后使用训练好的模型对测试集进行预测,并计算均方误差。最后将预测结果与真实数据进行可视化展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值