✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
卷积神经网络(CNN)是一种广泛应用于图像识别、语音识别、自然语言处理等领域的深度学习模型。在CNN中,卷积层和池化层可以有效地提取图像的特征,而全连接层则可以将这些特征映射到类别上。然而,这种传统的CNN模型并没有考虑到不同特征之间的关联性,因此可能会出现一些分类错误的情况。为了解决这个问题,我们可以引入注意力机制来增强CNN的分类能力。
注意力机制是一种模仿人类视觉注意机制的机制,它可以根据输入的不同特征,自动地调节它们的权重,从而使得模型更加关注重要的特征。在CNN中,我们可以将注意力机制加入到卷积层中,从而实现对不同特征的加权。
具体来说,我们可以将卷积层的输出作为注意力机制的输入,然后通过一个全连接层来计算每个特征的权重。这里的全连接层可以看作是一个分类器,它的输入是卷积层的输出,输出是每个特征的权重。在计算完权重之后,我们可以将它们与卷积层的输出相乘,从而得到加权后的特征。最后,我们可以将这些加权后的特征送入全连接层,从而得到最终的分类结果。
在实现CNN-attention模型时,我们需要注意以下几点:
-
注意力机制的计算需要额外的计算量,因此可能会增加模型的训练时间和计算复杂度。
-
在计算特征权重时,我们可以使用不同的方法,比如基于sigmoid函数或softmax函数的方法。这些方法的选择会影响模型的性能和收敛速度。
-
在训练CNN-attention模型时,我们需要使用适当的损失函数和优化器来最小化分类误差。
-
在测试CNN-attention模型时,我们需要注意权重的可解释性和模型的泛化能力。
总之,CNN-attention模型是一种基于注意力机制的卷积神经网络,它可以有效地增强模型的分类能力,特别是在处理复杂的图像和语音数据时。通过合理地设计模型结构和训练策略,我们可以实现高效、准确的数据分类。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 吴小晴.基于CNN的双向LSTM注意力机制垃圾邮件分类的研究与分析[D].南昌大学,2020.
[2] 周文远,王名扬,井钰.基于AttentionSBGMC模型的引文情感和引文目的自动分类研究[J].数据分析与知识发现, 2021(012):005.
[3] 王吉俐,彭敦陆,陈章,等.AM-CNN:一种基于注意力的卷积神经网络文本分类模型[J].小型微型计算机系统, 2019, 40(4):5.DOI:CNKI:SUN:XXWX.0.2019-04-004.