✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在无人机领域,如何实现复杂地形下的避障和三维航迹规划一直是一个具有挑战性的问题。为了解决这一问题,研究人员提出了基于熊气味搜索算法(BSSA)的方法,该方法能够有效地实现无人机的避障和航迹规划。本文将介绍基于BSSA的复杂地形无人机避障三维航迹规划算法的步骤。
首先,我们需要了解熊气味搜索算法(BSSA)的基本原理。BSSA是一种基于生物启发的算法,其灵感来源于熊在寻找食物时释放气味并根据气味浓度来调整自己的行动。在BSSA中,无人机会释放一定数量的气味,并根据周围气味的浓度来调整自己的飞行路径,从而实现避障和航迹规划。
接下来,我们将介绍基于BSSA的复杂地形无人机避障三维航迹规划算法的具体步骤。首先,无人机需要获取周围环境的地形信息,包括高度、障碍物位置等。然后,无人机释放一定数量的气味,并根据周围气味的浓度来调整自己的飞行路径,以避开障碍物并规划出一条安全的航迹。在这个过程中,无人机会不断释放气味,并根据周围环境的变化来调整自己的飞行路径,直到到达目的地。
此外,基于BSSA的复杂地形无人机避障三维航迹规划算法还可以考虑风速、风向等外部环境因素,并对无人机的飞行路径进行进一步优化。通过这种方法,无人机可以有效地避开复杂地形中的障碍物,并规划出一条安全、高效的航迹。
总之,基于熊气味搜索算法(BSSA)的复杂地形无人机避障三维航迹规划算法是一种有效的方法,能够帮助无人机在复杂地形中实现避障和航迹规划。通过不断优化算法和方法,我们相信这种方法将在无人机领域发挥重要作用,为无人机的应用提供更加可靠、安全的保障。
📣 部分代码
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,2); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
% If each variable has a different lb and ub
if Boundary_no>1
for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
end
end
⛳️ 运行结果
🔗 参考文献
[1] 徐宏飞.面向智慧避障的物流无人机航迹规划研究[D].北京交通大学,2019.
[2] 徐宏飞.面向智慧避障的物流无人机航迹规划研究[J].北京交通大学[2023-11-09].