✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
🔥 内容介绍
近年来,随着工业技术的不断发展,机械设备的运行状态监测和故障诊断变得越来越重要。轴承作为机械设备中的重要部件之一,其故障信号的准确识别对于设备的正常运行至关重要。然而,由于环境噪声和其他干扰因素的存在,轴承故障信号往往被掩盖或混淆,给故障诊断带来了很大的困难。
为了解决这一问题,研究人员提出了一种新的方法,即利用遗传算法优化的变分模态分解(GA-VMD)技术来实现轴承故障信号的去噪。遗传算法是一种模拟自然选择和遗传机制的优化方法,能够有效地寻找最优解。而变分模态分解是一种信号处理技术,可以将信号分解成多个固有模态函数,从而实现信号的去噪和特征提取。
在这项研究中,研究人员首先利用遗传算法对变分模态分解的参数进行优化,以提高其信号处理的效果。然后,他们将优化后的变分模态分解应用于轴承故障信号的去噪,通过实验验证了该方法的有效性和可行性。
研究结果表明,利用遗传算法优化的变分模态分解能够有效地去除轴承故障信号中的噪声,提取出故障特征,从而为后续的故障诊断和预测提供了可靠的数据基础。与传统的信号处理方法相比,GA-VMD方法具有更高的准确性和稳定性,能够更好地满足工程实际中对于故障诊断的需求。
总的来说,遗传算法优化的变分模态分解(GA-VMD)技术为轴承故障信号的去噪提供了一种新的解决方案,具有很大的应用前景和推广价值。未来,我们可以进一步探索其在其他领域的应用,为工业设备的健康监测和故障诊断提供更多的技术支持。
📣 部分代码
%%% 模糊熵计算函数 %%%
function SampEn = Fuzzy_Entropy( dim, r, data, tau )
% FUZZYEN Fuzzy Entropy
% calculates the fuzzy entropy of a given time series data
% Similarity definition based on vectors' shapes, together with the
% exclusion of self-matches, earns FuzzyEn stronger relative consistency
% and less dependence on data length.
% dim : embedded dimension
% r : tolerance (typically 0.2 * std)
% data : time-series data
% tau : delay time for downsampling (user can omit this, in which case
% the default value is 1)
%
if nargin < 4, tau = 1; end
if tau > 1, data = downsample(data, tau); end
N = length(data);
result = zeros(1,2);
for m = dim:dim+1% 该循环用于实现算法的第六步
Bi = zeros(1,N-m+1);
dataMat = zeros(m,N-m+1);
% setting up data matrix
for i = 1:m
dataMat(i,:) = data(i:N-m+i);
end
% counting similar patterns using distance calculation
for j = 1:N-m+1
% calculate Chebyshev distance, excluding self-matching case
dist = max(abs(dataMat - repmat(dataMat(:,j),1,N-m+1)));
% calculate Heaviside function of the distance
% User can change it to any other function
% for modified sample entropy (mSampEn) calculation
D = (dist <= r);
% excluding self-matching case
Bi(j) = (sum(D)-1)/(N-m);
end
% summing over the counts
result(m-dim+1) = sum(Bi)/(N-m+1);
end
SampEn = -log(result(2)/result(1));
end