✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

近年来,随着工业技术的不断发展,机械设备的运行状态监测和故障诊断变得越来越重要。轴承作为机械设备中的重要部件之一,其故障信号的准确识别对于设备的正常运行至关重要。然而,由于环境噪声和其他干扰因素的存在,轴承故障信号往往被掩盖或混淆,给故障诊断带来了很大的困难。

为了解决这一问题,研究人员提出了一种新的方法,即利用遗传算法优化的变分模态分解(GA-VMD)技术来实现轴承故障信号的去噪。遗传算法是一种模拟自然选择和遗传机制的优化方法,能够有效地寻找最优解。而变分模态分解是一种信号处理技术,可以将信号分解成多个固有模态函数,从而实现信号的去噪和特征提取。

在这项研究中,研究人员首先利用遗传算法对变分模态分解的参数进行优化,以提高其信号处理的效果。然后,他们将优化后的变分模态分解应用于轴承故障信号的去噪,通过实验验证了该方法的有效性和可行性。

研究结果表明,利用遗传算法优化的变分模态分解能够有效地去除轴承故障信号中的噪声,提取出故障特征,从而为后续的故障诊断和预测提供了可靠的数据基础。与传统的信号处理方法相比,GA-VMD方法具有更高的准确性和稳定性,能够更好地满足工程实际中对于故障诊断的需求。

总的来说,遗传算法优化的变分模态分解(GA-VMD)技术为轴承故障信号的去噪提供了一种新的解决方案,具有很大的应用前景和推广价值。未来,我们可以进一步探索其在其他领域的应用,为工业设备的健康监测和故障诊断提供更多的技术支持。

📣 部分代码

%%% 模糊熵计算函数 %%% 
function SampEn = Fuzzy_Entropy( dim, r, data, tau )
% FUZZYEN Fuzzy Entropy
%   calculates the fuzzy entropy of a given time series data

% Similarity definition based on vectors' shapes, together with the
% exclusion of self-matches, earns FuzzyEn stronger relative consistency
% and less dependence on data length.

%   dim     : embedded dimension 
%   r       : tolerance (typically 0.2 * std)
%   data    : time-series data
%   tau     : delay time for downsampling (user can omit this, in which case
%             the default value is 1)
%

if nargin < 4, tau = 1; end
if tau > 1, data = downsample(data, tau); end

N = length(data);
result = zeros(1,2);

for m = dim:dim+1% 该循环用于实现算法的第六步
    Bi = zeros(1,N-m+1);
    dataMat = zeros(m,N-m+1);
    
    % setting up data matrix
    for i = 1:m
        dataMat(i,:) = data(i:N-m+i);
    end
    
    % counting similar patterns using distance calculation
    for j = 1:N-m+1
        % calculate Chebyshev distance, excluding self-matching case
        dist = max(abs(dataMat - repmat(dataMat(:,j),1,N-m+1)));
        % calculate Heaviside function of the distance
        % User can change it to any other function
        % for modified sample entropy (mSampEn) calculation
        D = (dist <= r);
        % excluding self-matching case
        Bi(j) = (sum(D)-1)/(N-m);
    end
    
    % summing over the counts
    result(m-dim+1) = sum(Bi)/(N-m+1);
    
end

SampEn = -log(result(2)/result(1));

end

⛳️ 运行结果

【信号去噪—VMD】基于遗传算法优化变分模态分解GA-VMD实现轴承故障信号去噪附matlab代码_路径规划

【信号去噪—VMD】基于遗传算法优化变分模态分解GA-VMD实现轴承故障信号去噪附matlab代码_模态_02

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合