✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在当今快速发展的物流行业中,自动引导车(AGV)已经成为了自动化仓储和物流系统中不可或缺的一部分。AGV小车的路径规划是保证其高效运行的关键之一。而带有时间窗的多AGV小车路径规划问题则是一个具有挑战性的研究领域。为了解决这一问题,研究人员一直在寻找有效的算法来优化路径规划,其中Dijkstra算法被广泛应用并且取得了一定的成果。
Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。它通过不断地找到从起点到未访问顶点的最短路径来逐步扩展最短路径的长度,直到找到终点为止。这种算法的优势在于其简单易懂、容易实现,并且在许多实际应用中表现良好。
然而,在实际的AGV路径规划中,我们需要考虑到时间窗的限制。时间窗是指在某些特定的时间范围内,AGV小车可以执行任务。因此,路径规划不仅需要考虑最短路径,还需要满足时间窗的限制,以确保AGV小车在规定的时间内完成任务。这就给传统的Dijkstra算法带来了一定的挑战。
为了解决带时间窗的多AGV小车路径规划问题,研究人员对Dijkstra算法进行了一定的改进。一种常见的改进方法是将时间窗约束条件融入到路径规划的过程中。具体来说,可以将时间窗作为一个额外的约束条件,加入到路径规划的目标函数中。这样一来,算法就可以在寻找最短路径的同时,考虑到时间窗的限制,从而得到满足时间窗条件的最优路径。
除了对Dijkstra算法本身的改进,研究人员还提出了一些基于Dijkstra算法的变种算法来解决带时间窗的多AGV小车路径规划问题。例如,可以结合启发式搜索的思想,设计一种能够快速收敛并且能够有效考虑时间窗约束的路径规划算法。这些变种算法在实际的应用中取得了一定的效果,并且为解决带时间窗的多AGV小车路径规划问题提供了新的思路。
除了算法本身的改进,研究人员还积极探索了其他与路径规划相关的技术。例如,利用机器学习的方法来预测AGV小车在不同时间段内的运行情况,从而更加准确地确定时间窗的限制条件。同时,一些研究还尝试将AGV小车的实时运行数据与路径规划算法相结合,实现实时动态调整路径,以适应实际运行环境的变化。
总的来说,基于Dijkstra算法求解带时间窗多AGV小车路径规划是一个具有挑战性的研究领域。通过对Dijkstra算法的改进和优化,以及结合其他相关技术,研究人员正在不断探索新的解决方案,为提高AGV小车路径规划的效率和准确性做出努力。随着技术的不断进步和研究的深入,相信在不久的将来,我们将会看到更多关于带时间窗多AGV小车路径规划的创新成果,为物流行业带来更大的效益和便利。
📣 部分代码
%画出环境地图及路径
function plotMap_Path(map,spcost,OUT,P,X,Y,C,I)
% map 地图矩阵
% P 路径索引矩阵
% spcost 路径距离值
% OUT 路径索引标识
% X Y 路径坐标矩阵
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1)) %设置障碍物的左下角点的x,y坐标
for(j=1:n(2))
if(map(i,j)==1)
p(r,1)=j-1;
p(r,2)=i-1;
fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
r=r+1;
hold on
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
[row,col] = ind2sub([n(2),n(1)],i);
text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅画出栅格时标及路径%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(spcost<999) %判断是否为可达路径
place = 0.6-0.03*I;
plot(X(P(OUT(1)),:)-place,Y(P(OUT(1)),:)-place,'Color',C(I-1,:),'LineWidth',2);%画出路径
hold on
% if I==2 %画出时标
% q = size(TW,2)-1;
% for z=1:q
% text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.05,num2str(TW(OUT,z)),'Fontsize',8,'Color',C(I-1,:));
% text(X(P(OUT),z)-0.9,Y(P(OUT),z)-0.18,'|','Fontsize',8,'Color','k');
% text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.35,num2str(TW(OUT,z+1)),'Fontsize',8,'Color',C(I-1,:));
% end
% hold on
% else
% q = size(TW(OUT,:),2)-1;
% for z=1:q
% text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.65,num2str(TW(OUT,z)),'Fontsize',8,'Color',C(I-1,:));
% text(X(P(OUT),z)-0.9,Y(P(OUT),z)-0.77,'|','Fontsize',8,'Color','k');
% text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.9,num2str(TW(OUT,z+1)),'Fontsize',8,'Color',C(I-1,:));
% end
% hold on
% end
else
error('路径不可达');
end
end
⛳️ 运行结果
🔗 参考文献
[1] 谭清化.基于超图的自动导引小车动态作业调度问题研究[D].沈阳大学[2023-12-23].DOI:CNKI:CDMD:2.1015.413968.
[2] 王子意.多AGV系统的路径规划与调度算法的研究[D].北京邮电大学,2019.