Dijkstra算法求解带时间窗多AGV小车路径规划附Matlab实现

文章探讨了在物流行业中,自动引导车(AGV)的路径规划如何应对时间窗限制,通过Dijkstra算法的改进、机器学习预测和实时数据整合,以提高效率和准确性。着重介绍了如何将时间窗约束纳入路径规划,以及基于Dijkstra的变种算法和相关技术应用。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在当今快速发展的物流行业中,自动引导车(AGV)已经成为了自动化仓储和物流系统中不可或缺的一部分。AGV小车的路径规划是保证其高效运行的关键之一。而带有时间窗的多AGV小车路径规划问题则是一个具有挑战性的研究领域。为了解决这一问题,研究人员一直在寻找有效的算法来优化路径规划,其中Dijkstra算法被广泛应用并且取得了一定的成果。

Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。它通过不断地找到从起点到未访问顶点的最短路径来逐步扩展最短路径的长度,直到找到终点为止。这种算法的优势在于其简单易懂、容易实现,并且在许多实际应用中表现良好。

然而,在实际的AGV路径规划中,我们需要考虑到时间窗的限制。时间窗是指在某些特定的时间范围内,AGV小车可以执行任务。因此,路径规划不仅需要考虑最短路径,还需要满足时间窗的限制,以确保AGV小车在规定的时间内完成任务。这就给传统的Dijkstra算法带来了一定的挑战。

为了解决带时间窗的多AGV小车路径规划问题,研究人员对Dijkstra算法进行了一定的改进。一种常见的改进方法是将时间窗约束条件融入到路径规划的过程中。具体来说,可以将时间窗作为一个额外的约束条件,加入到路径规划的目标函数中。这样一来,算法就可以在寻找最短路径的同时,考虑到时间窗的限制,从而得到满足时间窗条件的最优路径。

除了对Dijkstra算法本身的改进,研究人员还提出了一些基于Dijkstra算法的变种算法来解决带时间窗的多AGV小车路径规划问题。例如,可以结合启发式搜索的思想,设计一种能够快速收敛并且能够有效考虑时间窗约束的路径规划算法。这些变种算法在实际的应用中取得了一定的效果,并且为解决带时间窗的多AGV小车路径规划问题提供了新的思路。

除了算法本身的改进,研究人员还积极探索了其他与路径规划相关的技术。例如,利用机器学习的方法来预测AGV小车在不同时间段内的运行情况,从而更加准确地确定时间窗的限制条件。同时,一些研究还尝试将AGV小车的实时运行数据与路径规划算法相结合,实现实时动态调整路径,以适应实际运行环境的变化。

总的来说,基于Dijkstra算法求解带时间窗多AGV小车路径规划是一个具有挑战性的研究领域。通过对Dijkstra算法的改进和优化,以及结合其他相关技术,研究人员正在不断探索新的解决方案,为提高AGV小车路径规划的效率和准确性做出努力。随着技术的不断进步和研究的深入,相信在不久的将来,我们将会看到更多关于带时间窗多AGV小车路径规划的创新成果,为物流行业带来更大的效益和便利。

📣 部分代码

%画出环境地图及路径function plotMap_Path(map,spcost,OUT,P,X,Y,C,I)% map 地图矩阵% P   路径索引矩阵% spcost 路径距离值% OUT 路径索引标识% X Y 路径坐标矩阵n = size(map);step = 1;a = 0 : step :n(1);b = 0 : step :n(2);figure(1)axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...'xGrid','on','yGrid','on');hold onr = 1;for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标    for(j=1:n(2))        if(map(i,j)==1)            p(r,1)=j-1;            p(r,2)=i-1;            fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...                 [p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');            r=r+1;            hold on        end    endend  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%x_text = 1:1:n(1)*n(2); %产生所需数值.for i = 1:1:n(1)*n(2)    [row,col] = ind2sub([n(2),n(1)],i);    text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');endhold onaxis square %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅画出栅格时标及路径%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(spcost<999)    %判断是否为可达路径      place = 0.6-0.03*I;      plot(X(P(OUT(1)),:)-place,Y(P(OUT(1)),:)-place,'Color',C(I-1,:),'LineWidth',2);%画出路径      hold on%       if I==2   %画出时标%           q = size(TW,2)-1;%          for z=1:q    %           text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.05,num2str(TW(OUT,z)),'Fontsize',8,'Color',C(I-1,:));%           text(X(P(OUT),z)-0.9,Y(P(OUT),z)-0.18,'|','Fontsize',8,'Color','k');%           text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.35,num2str(TW(OUT,z+1)),'Fontsize',8,'Color',C(I-1,:));%          end%          hold on%       else%           q = size(TW(OUT,:),2)-1;%          for z=1:q%           text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.65,num2str(TW(OUT,z)),'Fontsize',8,'Color',C(I-1,:));%           text(X(P(OUT),z)-0.9,Y(P(OUT),z)-0.77,'|','Fontsize',8,'Color','k');%           text(X(P(OUT),z)-0.98,Y(P(OUT),z)-0.9,num2str(TW(OUT,z+1)),'Fontsize',8,'Color',C(I-1,:));%          end%          hold on%       end else    error('路径不可达');endend

⛳️ 运行结果

🔗 参考文献

[1] 谭清化.基于超图的自动导引小车动态作业调度问题研究[D].沈阳大学[2023-12-23].DOI:CNKI:CDMD:2.1015.413968.

[2] 王子意.多AGV系统的路径规划与调度算法的研究[D].北京邮电大学,2019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值