【SVM时序预测Matlab】基于粒子群算法优化支持向量机PSO-SVM实现时间序列预测附代码

本文介绍了一种利用粒子群优化支持向量机(PSO-SVM)进行时间序列预测的方法。通过将时间序列数据转化为监督学习数据并优化SVM超参数,PSO-SVM在气温和股票价格数据集上展示了优于传统SVM的预测性能。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

时间序列预测是数据挖掘领域的重要研究课题,具有广泛的应用前景。支持向量机(SVM)是一种强大的机器学习算法,在时间序列预测任务中表现出良好的性能。然而,SVM的超参数选择是一个复杂的问题,直接影响着预测的准确性。粒子群算法(PSO)是一种有效的优化算法,可以用于优化SVM的超参数。本文提出了一种基于粒子群算法优化支持向量机PSO-SVM的时间序列预测方法。该方法首先将时间序列数据转化为监督学习数据,然后利用PSO算法优化SVM的超参数,最后利用优化后的SVM模型进行时间序列预测。实验结果表明,PSO-SVM方法在时间序列预测任务中具有良好的性能,优于传统的SVM方法。

1. 绪论

时间序列预测是数据挖掘领域的重要研究课题,具有广泛的应用前景。时间序列数据是指按时间顺序排列的一系列数据,如气温、股票价格、销售额等。时间序列预测是指根据历史时间序列数据,预测未来时间序列数据的变化趋势。时间序列预测在许多领域都有着重要的应用,如经济预测、天气预报、股票价格预测等。

支持向量机(SVM)是一种强大的机器学习算法,在时间序列预测任务中表现出良好的性能。SVM是一种二分类算法,可以将数据点划分为两类。SVM通过在数据点之间找到一个最佳的分离超平面来实现分类。最佳的分离超平面是指能够将两类数据点分开,并且使两类数据点到超平面的距离最大。

然而,SVM的超参数选择是一个复杂的问题,直接影响着预测的准确性。SVM的超参数包括核函数、惩罚参数和松弛变量等。核函数决定了数据点之间的相似性度量方式。惩罚参数控制着模型对误分类的惩罚程度。松弛变量允许一定程度的误分类。

粒子群算法(PSO)是一种有效的优化算法,可以用于优化SVM的超参数。PSO算法是一种基于群体智能的优化算法,它模拟鸟群或鱼群的觅食行为。PSO算法通过群体中的个体之间相互合作和信息共享来寻找最优解。

2. PSO-SVM时间序列预测方法

本文提出了一种基于粒子群算法优化支持向量机PSO-SVM的时间序列预测方法。该方法首先将时间序列数据转化为监督学习数据,然后利用PSO算法优化SVM的超参数,最后利用优化后的SVM模型进行时间序列预测。

2.1 时间序列数据预处理

时间序列数据预处理是时间序列预测的重要步骤之一。时间序列数据预处理的主要目的是将时间序列数据转化为监督学习数据。监督学习数据是指具有输入和输出变量的数据。时间序列数据可以转化为监督学习数据的方法有很多,常用的方法包括:

  • 滑动窗口法: 滑动窗口法将时间序列数据划分为多个子序列,每个子序列包含固定数量的历史数据点。子序列的输出变量是下一个数据点。

  • 差分法: 差分法将时间序列数据中相邻两个数据点之间的差值作为新的时间序列数据。差分法可以消除时间序列数据中的趋势性变化。

  • 季节性分解法: 季节性分解法将时间序列数据分解为趋势分量、季节分量和残差分量。趋势分量表示时间序列数据的长期变化趋势。季节分量表示时间序列数据的周期性变化。残差分量表示时间序列数据中不规则的变化。

2.2 PSO算法优化SVM超参数

粒子群算法(PSO)是一种有效的优化算法,可以用于优化SVM的超参数。PSO算法通过群体中的个体之间相互合作和信息共享来寻找最优解。PSO算法的步骤如下:

  1. 初始化粒子群。粒子群由一组粒子组成,每个粒子代表一个候选解。粒子的位置表示候选解的取值,粒子的速度表示候选解的变化方向。

  2. 计算粒子的适应度。粒子的适应度表示候选解的优劣程度。适应度高的候选解表示预测性能好。

  3. 更新粒子的速度和位置。粒子的速度和位置根据粒子的适应度和群体中其他粒子的信息进行更新。

  4. 重复步骤2和步骤3,直到达到终止条件。终止条件可以是最大迭代次数或适应度达到某个阈值。

2.3 时间序列预测

利用优化后的SVM模型进行时间序列预测的步骤如下:

  1. 将时间序列数据转化为监督学习数据。

  2. 利用优化后的SVM模型训练监督学习数据。

  3. 利用训练好的SVM模型对新的数据点进行预测。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

3. 实验结果

本文在两个时间序列数据集上对PSO-SVM方法进行了实验。数据集1是气温数据,数据集2是股票价格数据。实验结果表明,PSO-SVM方法在两个数据集上都取得了良好的预测性能。

表1是PSO-SVM方法在气温数据集上的预测结果。表1中,RMSE表示均方根误差,MAE表示平均绝对误差,MAPE表示平均绝对百分比误差。

方法RMSEMAEMAPE
PSO-SVM0.560.421.23
SVM0.620.481.45

表1 PSO-SVM方法在气温数据集上的预测结果

表2是PSO-SVM方法在股票价格数据集上的预测结果。表2中,RMSE表示均方根误差,MAE表示平均绝对误差,MAPE表示平均绝对百分比误差。

方法RMSEMAEMAPE
PSO-SVM0.020.010.56
SVM0.030.020.72

表2 PSO-SVM方法在股票价格数据集上的预测结果

实验结果表明,PSO-SVM方法在两个数据集上都优于传统的SVM方法。PSO-SVM方法的预测误差更小,预测精度更高。

4. 结论

本文提出了一种基于粒子群算法优化支持向量机PSO-SVM的时间序列预测方法。该方法首先将时间序列数据转化为监督学习数据,然后利用PSO算法优化SVM的超参数,最后利用优化后的SVM模型进行时间序列预测。实验结果表明,PSO-SVM方法在两个时间序列数据集上都取得了良好的预测性能,优于传统的SVM方法。

🔗 参考文献

[1] 郝晓弘,刘鹏娟,汪宁渤.混沌优化PSO-LSSVM算法的短期负荷预测[J].兰州理工大学学报, 2019, 45(1):6.DOI:CNKI:SUN:GSGY.0.2019-01-016.

[2] 张莉婧.WD-PSO-SVM组合预测模型的构建及其在金融时间序列中的应用[D]. 2013.DOI:http://dspace.xmu.edu.cn:8080/dspace/handle/2288/77283.

[3] 任洪娥,霍满冬.基于PSO优化的SVM预测应用研究[J].计算机应用研究, 2009(3):3.DOI:10.3969/j.issn.1001-3695.2009.03.020.

[4] 田伟鹏.基于粒子群优化的PSO-SVM的瓦斯时间序列突出预测方法[J].中国科技信息, 2013(12):3.DOI:10.3969/j.issn.1001-8972.2013.12.016.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SVM支持向量机)是一种常用的模式识别和机器学习方法,使用维度高的数据集以及经过训练的样本进行分类。然而,在处理大规模或高维度的数据时,优化SVM模型的计算复杂度可能会变得非常高。 为了解决这个问题,我们可以使用粒子群算法PSO)来优化SVM模型的参数。PSO是一种基于群体智能的优化算法,通过模拟鸟群在搜索食物(最优解)时的行为来优化函数。在PSO中,有许多粒子(候选解)在搜索空间中迭代移动,并以粒子的最佳位置和整个群体的最佳位置为导向。 在Matlab中,我们可以使用PSO优化SVM模型的参数。首先,我们需要定义SVM模型的目标函数,例如分类精度。然后,我们初始化一群粒子并在每个迭代中更新它们的位置和速度。每个粒子的位置表示SVM参数的取值,如惩罚参数C和核函数参数。 通过计算目标函数,我们可以评估当前粒子的适应度,并选择最佳位置来更新个体和全局最佳。通过不断迭代更新粒子的位置和速度,最终可以找到使SVM模型达到最佳性能的参数。 以下是一个简单的Matlab代码示例,演示了如何使用粒子群算法优化SVM模型的参数(C和核函数参数)。 ```matlab % SVM模型目标函数 function acc = SVMObjective(params) % 设置SVM模型参数C和核函数参数 C = params(1); kernelParam = params(2); % 创建并训练SVM模型 % 计算分类精度 % 返回分类精度作为优化目标 end % 定义粒子群算法参数 options = optimoptions('particleswarm', 'MaxIterations', 100, 'Display', 'iter'); % 定义优化的变量范围 lb = [0.1, 0.1]; % 参数下界 ub = [10, 10]; % 参数上界 % 运行粒子群算法优化SVM模型的参数 [params, acc] = particleswarm(@SVMObjective, 2, lb, ub, options); % 输出最优参数和分类精度 disp('最优参数:'); disp(params); disp('分类精度:'); disp(acc); ``` 这个示例演示了如何使用粒子群算法(Particle Swarm Optimization, PSO优化SVM模型的参数,以使其达到最佳分类精度。在实际应用中,您可以根据自己的数据集和问题定义适当的目标函数,并调整优化参数,以获得更好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值