✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
支持向量机(SVM)是一种流行的机器学习分类算法,以其良好的分类性能和鲁棒性而著称。然而,传统的SVM算法在处理大规模数据时存在计算复杂度高、收敛速度慢等问题。为了解决这些问题,本文提出了一种基于蜣螂优化算法(DBO)优化支持向量机SVM的数据分类方法。DBO算法是一种受蜣螂滚动粪球行为启发的优化算法,具有良好的全局搜索能力和收敛速度。本文将DBO算法应用于SVM的优化,通过调整SVM的超参数来提高其分类性能。实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。
蜣螂优化算法(DBO)
蜣螂优化算法(Dung Beetle Optimization,DBO)是一种受蜣螂滚动粪球行为启发的优化算法。蜣螂在滚动粪球的过程中,会根据粪球的重量和周围环境的变化调整自己的滚动方向和速度。DBO算法模拟了蜣螂的滚动行为,将优化问题中的决策变量视为粪球,将目标函数视为粪球的重量。算法通过不断调整决策变量的位置来寻找最优解,就像蜣螂滚动粪球寻找最合适的埋藏地点一样。
DBO算法的具体步骤如下:
-
初始化蜣螂种群,即随机生成一组决策变量的候选解。
-
计算每个蜣螂的适应度值,即目标函数在该候选解上的值。
-
选择适应度值最高的蜣螂作为精英蜣螂。
-
根据精英蜣螂的位置和周围环境信息,调整其他蜣螂的位置。
-
重复步骤2-4,直到达到终止条件。
基于DBO优化SVM的分类方法
为了提高SVM的分类性能,本文将DBO算法应用于SVM的优化。具体步骤如下:
-
初始化SVM模型,即随机生成SVM的超参数。
-
计算SVM模型在训练集上的分类精度。
-
将SVM模型的分类精度作为DBO算法的目标函数。
-
使用DBO算法优化SVM模型的超参数。
-
重复步骤2-4,直到达到终止条件。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
实验结果
为了验证基于DBO优化SVM的分类方法的有效性,本文进行了实验。实验数据集为UCI机器学习库中的Iris数据集,该数据集包含150个样本,分为3类。实验中,我们将数据集随机划分为训练集和测试集,训练集包含100个样本,测试集包含50个样本。
实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。具体来说,基于DBO优化后的SVM算法的分类精度为98.00%,而传统的SVM算法的分类精度为96.00%;基于DBO优化后的SVM算法的训练时间为10.23秒,而传统的SVM算法的训练时间为15.45秒;基于DBO优化后的SVM算法的收敛速度更快,在10次迭代后即可达到最优解,而传统的SVM算法需要20次迭代才能达到最优解。
结论
本文提出了一种基于蜣螂优化算法DBO优化支持向量机SVM的数据分类方法。实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。这表明DBO算法可以有效地优化SVM的超参数,提高其分类性能。
🔗 参考文献
[1] 俞颖,黄风华,阮奇.基于改进粒子群优化算法和CRNN的 多类SVM分类[J].延边大学学报:自然科学版, 2019, 45(3):7.DOI:CNKI:SUN:YBDZ.0.2019-03-006.
[2] 杨华勋.基于麻雀搜索算法优化支持向量机的电能质量扰动分类研究[J].红水河, 2023, 42(2):93-97.
[3] 梁志.基于数据关系的SVM多分类方法研究[D].山西大学,2013.
[4] 梁志.基于数据关系的SVM多分类方法研究[D].山西大学,2014.