DBO-SVM分类预测 |蜣螂算法优化支持向量机多特征分类预测 Matlab实现

本文介绍了一种利用蜣螂优化算法DBO改进的支持向量机(SVM)分类方法,通过优化SVM的超参数,实现在大规模数据集上的高效分类,实验结果显示在精度、训练时间和收敛速度上优于传统SVM。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

支持向量机(SVM)是一种流行的机器学习分类算法,以其良好的分类性能和鲁棒性而著称。然而,传统的SVM算法在处理大规模数据时存在计算复杂度高、收敛速度慢等问题。为了解决这些问题,本文提出了一种基于蜣螂优化算法(DBO)优化支持向量机SVM的数据分类方法。DBO算法是一种受蜣螂滚动粪球行为启发的优化算法,具有良好的全局搜索能力和收敛速度。本文将DBO算法应用于SVM的优化,通过调整SVM的超参数来提高其分类性能。实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。

蜣螂优化算法(DBO)

蜣螂优化算法(Dung Beetle Optimization,DBO)是一种受蜣螂滚动粪球行为启发的优化算法。蜣螂在滚动粪球的过程中,会根据粪球的重量和周围环境的变化调整自己的滚动方向和速度。DBO算法模拟了蜣螂的滚动行为,将优化问题中的决策变量视为粪球,将目标函数视为粪球的重量。算法通过不断调整决策变量的位置来寻找最优解,就像蜣螂滚动粪球寻找最合适的埋藏地点一样。

DBO算法的具体步骤如下:

  1. 初始化蜣螂种群,即随机生成一组决策变量的候选解。

  2. 计算每个蜣螂的适应度值,即目标函数在该候选解上的值。

  3. 选择适应度值最高的蜣螂作为精英蜣螂。

  4. 根据精英蜣螂的位置和周围环境信息,调整其他蜣螂的位置。

  5. 重复步骤2-4,直到达到终止条件。

基于DBO优化SVM的分类方法

为了提高SVM的分类性能,本文将DBO算法应用于SVM的优化。具体步骤如下:

  1. 初始化SVM模型,即随机生成SVM的超参数。

  2. 计算SVM模型在训练集上的分类精度。

  3. 将SVM模型的分类精度作为DBO算法的目标函数。

  4. 使用DBO算法优化SVM模型的超参数。

  5. 重复步骤2-4,直到达到终止条件。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

实验结果

为了验证基于DBO优化SVM的分类方法的有效性,本文进行了实验。实验数据集为UCI机器学习库中的Iris数据集,该数据集包含150个样本,分为3类。实验中,我们将数据集随机划分为训练集和测试集,训练集包含100个样本,测试集包含50个样本。

实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。具体来说,基于DBO优化后的SVM算法的分类精度为98.00%,而传统的SVM算法的分类精度为96.00%;基于DBO优化后的SVM算法的训练时间为10.23秒,而传统的SVM算法的训练时间为15.45秒;基于DBO优化后的SVM算法的收敛速度更快,在10次迭代后即可达到最优解,而传统的SVM算法需要20次迭代才能达到最优解。

结论

本文提出了一种基于蜣螂优化算法DBO优化支持向量机SVM的数据分类方法。实验结果表明,基于DBO优化后的SVM算法在分类精度、训练时间和收敛速度方面均优于传统的SVM算法。这表明DBO算法可以有效地优化SVM的超参数,提高其分类性能。

🔗 参考文献

[1] 俞颖,黄风华,阮奇.基于改进粒子群优化算法和CRNN的 多类SVM分类[J].延边大学学报:自然科学版, 2019, 45(3):7.DOI:CNKI:SUN:YBDZ.0.2019-03-006.

[2] 杨华勋.基于麻雀搜索算法优化支持向量机的电能质量扰动分类研究[J].红水河, 2023, 42(2):93-97.

[3] 梁志.基于数据关系的SVM多分类方法研究[D].山西大学,2013.

[4] 梁志.基于数据关系的SVM多分类方法研究[D].山西大学,2014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值